Reaching the EU quality standard for nitrate (50 mg NO3/L) in all groundwater bodies is a challenge in the Federal State of North Rhine-Westfalia (Germany). In the research project GROWA+ NRW 2021 initiated by the Federal States’ Ministry for Environment, Agriculture, Nature and Consumer Protection, amongst other aspects, a model-based analysis of agricultural nitrogen inputs into groundwater and nitrate concentration in the leachate was carried out. For this purpose, the water balance model mGROWA, the agro-economic model RAUMIS, and the reactive N transport model DENUZ were coupled and applied consistently across the whole territory of North Rhine-Westfalia with a spatial resolution of 100 m × 100 m. Besides agricultural N emissions, N emissions from small sewage plants, urban systems, and NOx deposition were also included in the model analysis. The comparisons of the modelled nitrate concentrations in the leachate of different land use influences with observed nitrate concentrations in groundwater were shown to have a good correspondence with regard to the concentration levels across all regions and different land-uses in North Rhine-Westphalia. On the level of ground water bodies (according to EU ground water directive) N emissions exclusively from agriculture led to failure of the good chemical state. This result will support the selection and the adequate dimensioning of regionally adapted agricultural N reduction measures.
Ammonia volatilisation from field applied slurries causes environmental hazards and loss of fertilizer value. Acidification of slurry, usually with inorganic or organic acids has previously been used to reduce NH3 emissions. In this study, we present an alternative technique for the acidification of slurry, namely the use of fermentation by endogenous microbes to form organic acids from readily degradable organic compounds. In laboratory experiments, the addition of different sugars (sucrose in dosages of 0.003, 0.01, 0.03, 0.1 and 0.3 mol l(-1), glucose in dosages of 0.05 and 0.1 mol l(-1)) and organic residues (sugar beet residues in dosages of 33 and 330 g fresh weight l(-1), biowaste at 50 g fresh weight l(-1)) to cattle slurry resulted in a considerable decrease in pH, with a minimum pH of 4.7. A subsequent pH increase indicated that the organic acids were probably further degraded with a resultant loss of acidity in the slurry. In a field study, the NH3 emissions from untreated and acidified (pH = 6) slurries were compared after field application (20 m3 ha(-1)). During the first 20 hours, the acidified slurry showed NH3 emissions of less than 5% of the applied ammonia compared to a 26% loss from the untreated slurry. The total emissions of NH4+-N were 32% for acidified and 54% for untreated slurry. Easily degradable organic amendments therefore have the potential to effectively reduce NH3 emissions from slurries and may be an alternative for the use of acids.
Thermal desorption of a wide spectrum of organic contaminants, initiated by radio frequency (RF) heating, was studied at laboratory and pilot-plant scales for an artificially contaminated soil and for an originally contaminated soil from an industrial site. Up to 100 °C, moderate desorption rates were observed for light aromatics such as toluene, chlorobenzene, and ethylbenzene. Desorption of the less volatile contaminants was greatly enhanced above 100 °C, when fast evaporation of soil-water produced steam for hydrocarbon stripping (steam-distillation, desorption rates increased by more than 1 order of magnitude). For hydrocarbons with low water solubility (e.g., aliphatic hydrocarbons), the temperature increase above 100 °C after desiccation of soil again led to a significant increase of the removal rates, thus showing the impact of hydrocarbon partial pressure. RF heating was shown to be an appropriate option for thermally enhanced soil vapor extraction, leading to efficient cleaning of contaminated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.