Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
Summary1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25Á8 9 25Á8 m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial 'ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achiev- This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2014, 5, 74-89 doi: 10.1111/2041-210X.12126 ing specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions. Methods in Ecology andEvolution
(2011). Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81(1): 25-41. Community assembly during secondary forest succession in a Chinese subtropical forest Abstract Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30330 m plots (n=27) from five successional stages (<20, <40, <60, <80, and ≤80 yr), we investigated how the gradient in species composition reflects underlying processes of community assembly. In particular, we tested whether species richness of adult trees and shrubs decreased or increased and assessed to which degree this pattern was caused by negative density dependence or continuous immigration over time. Furthermore, we tested whether rare species were increasingly enriched and the species composition of adult trees and shrubs became more similar to species composition of seedlings during the course of succession. We counted the individuals of all adult species and shrubs >1 m in height in each plot and counted all woody recruits (bank of all seedlings ≤1 m in height) in each central 10310 m quadrant of each plot. In addition, we measured a number of environmental variables (elevation, slope, aspect, soil moisture, pH, C, N, and C/N ratio) and biotic structural variables (height and cover of layers). Adult species richness varied from 25 to 69 species per plot, and in total 148 woody species from 46 families were recorded. There was a clear successional gradient in species composition as revealed by nonmetric multidimensional scaling (NMDS), but only a poor differentiation of different successional stages with respect to particular species. Adult richness per 100 individuals (rarefaction method) increased with successional stage. None of the measured abiotic variables were significantly correlated with adult species richness. We found no evidence that rare species were responsible for the increasing adult species richness, as richness of rare species among both adults and recruits was independent of the successional stage. Furthermore, the similarity between established adults and recruits did not increase with successional stage. There was a constant number of recruit species and also of exclusive recruit species, i.e., those that had not been present as adult individuals, across all successional stages, suggesting a continuous random immigration over time. variables were significantly correlated with adult species richness. We found no evidence that 41 rare species were responsible for the increasing adult species richness, as richness of rare 42 species amongst both adults and recruits was independent of the successional stage.
Local‐scale microclimatic conditions in forest understoreys play a key role in shaping the composition, diversity and function of these ecosystems. Consequently, understanding what drives variation in forest microclimate is critical to forecasting ecosystem responses to global change, particularly in the tropics where many species already operate close to their thermal limits and rapid land‐use transformation is profoundly altering local environments. Yet our ability to characterize forest microclimate at ecologically meaningful scales remains limited, as understorey conditions cannot be directly measured from outside the canopy. To address this challenge, we established a network of microclimate sensors across a land‐use intensity gradient spanning from old‐growth forests to oil‐palm plantations in Borneo. We then combined these observations with high‐resolution airborne laser scanning data to characterize how topography and canopy structure shape variation in microclimate both locally and across the landscape. In the processes, we generated high‐resolution microclimate surfaces spanning over 350 km2, which we used to explore the potential impacts of habitat degradation on forest regeneration under both current and future climate scenarios. We found that topography and vegetation structure were strong predictors of local microclimate, with elevation and terrain curvature primarily constraining daily mean temperatures and vapour pressure deficit (VPD), whereas canopy height had a clear dampening effect on microclimate extremes. This buffering effect was particularly pronounced on wind‐exposed slopes but tended to saturate once canopy height exceeded 20 m—suggesting that despite intensive logging, secondary forests remain largely thermally buffered. Nonetheless, at a landscape‐scale microclimate was highly heterogeneous, with maximum daily temperatures ranging between 24.2 and 37.2°C and VPD spanning two orders of magnitude. Based on this, we estimate that by the end of the century forest regeneration could be hampered in degraded secondary forests that characterize much of Borneo's lowlands if temperatures continue to rise following projected trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.