A particular aspect of the nonstationary nature of intermittent rainfall is investigated. It manifests itself in the fact that the average rain rate varies with the distance to the surrounding dry areas. The authors call this fundamental link between the rainfall intensity and the rainfall occurrence process the ''dry drift.'' Using high-resolution radar rain-rate maps and disdrometer data, they show how the dry drift affects the structure and the variability of intermittent rainfall fields. They provide a rigorous geostatistical framework to describe it and propose an extension of the concept to more general quantities like the (rain)drop size distribution.
A stochastic rainfall simulator based on the concept of ''dry drift'' is proposed. It is characterized by a new and nonstationary representation of rainfall in which the average rain rate (in log-space) depends on the distance to the closest surrounding dry areas. The result is a more realistic transition between dry and rainy areas and a better distribution of low and high rain rates inside the simulated rainy areas. The proposed approach is very general and can be used to simulate both unconditional and conditional rain rate time series, two-dimensional fields, and space-time fields. The parameterization is intuitive and can be done using time series and/or radar rain-rate maps. Several examples illustrating the simulator's capabilities are given. The results show that the simulated time series and rain rate fields look realistic and that they are difficult to distinguish from real observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.