The observed pattern supports the role of decidua as a tissue which promotes angiogenesis, attracts monocytes and modulates the function of the latter.
Background: Adult granulosa cell tumors of the ovary (GCTs) are sex cord stromal tumors of unpredictable behaviour. Up to now, the prediction of the relapsing/malignant potential remains difficult. CD56 (NCAM) in GCTs was previously described in only two studies. However, the expression of its isoforms was not examined.
Abstract-In mammals, the cloned low-threshold heat receptor, vanilloid receptor subtype 1 (VR1), is involved in the genesis of thermal hyperalgesia after inflammation. However, there is evidence that VR1 is not involved in the thermal hyperalgesia that occurs after nerve injury. In search for other heat receptors which might be involved in this phenomenon, we previously demonstrated that chick dorsal root ganglion neurons, which are insensitive to capsaicin, respond to low-threshold heat. Here, we investigated whether expression of the low-threshold noxious heat receptor in chicks is regulated by nerve growth factor (NGF), as VR1 is in mammals. Heat (44°C) responsiveness of isolated dorsal root ganglion neurons of chicks was investigated (i) under culture conditions for up to 4 days with and without NGF and (ii) after a tight ligation of the sciatic nerve for up to 6 days, using cobalt-uptake method. In every case, a significant upregulation in the proportion of heat-responsive neurons was observed. On the molecular level, there was an increase of chick VR1 mRNA level in dorsal root ganglion cells cultured for 3 days in medium lacking NGF. In rat dorsal root ganglion neurons cultured for 1-4 days without NGF, patch-clamp experiments revealed that after 1 day almost all neurons responding to heat also responded to capsaicin, whereas after 3-4 days, more than one-half of the heat-responsive neurons did not respond to capsaicin.These data suggest the existence of low-threshold heat receptors in chick dorsal root ganglion neurons, the expression of which is regulated independently of NGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.