Neurogenic orthostatic hypotension, postprandial hypotension and exercise-induced hypotension are common features of cardiovascular autonomic failure. Despite the serious impact on patient’s quality of life, evidence-based guidelines for non-pharmacological and pharmacological management are lacking at present. Here, we provide a systematic review of the literature on therapeutic options for neurogenic orthostatic hypotension and related symptoms with evidence-based recommendations according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE). Patient’s education and non-pharmacological measures remain essential, with strong recommendation for use of abdominal binders. Based on quality of evidence and safety issues, midodrine and droxidopa reach a strong recommendation level for pharmacological treatment of neurogenic orthostatic hypotension. In selected cases, a range of alternative agents can be considered (fludrocortisone, pyridostigmine, yohimbine, atomoxetine, fluoxetine, ergot alkaloids, ephedrine, phenylpropanolamine, octreotide, indomethacin, ibuprofen, caffeine, methylphenidate and desmopressin), though recommendation strength is weak and quality of evidence is low (atomoxetine, octreotide) or very low (fludrocortisone, pyridostigmine, yohimbine, fluoxetine, ergot alkaloids, ephedrine, phenylpropanolamine, indomethacin, ibuprofen, caffeine, methylphenidate and desmopressin). In case of severe postprandial hypotension, acarbose and octreotide are recommended (strong recommendation, moderate level of evidence). Alternatively, voglibose or caffeine, for which a weak recommendation is available, may be useful.
Iron is essential for cellular development and maintenance of multiple physiological processes in the central nervous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson’s disease; however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions of misfolded α-synuclein (α-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA pathogenesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native α-SYN into a β-sheet conformation and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, α-SYN possesses ferrireductase activity and α-SYN expression underlies iron mediated translational control via RNA stem loop structures. Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
Objective Cognitive impairment in multiple system atrophy (MSA) is common, but remain poorly characterized. We evaluated cognitive and behavioral features in MSA patients and assessed between‐group differences for MSA subtypes and the effect of orthostatic hypotension (OH) on cognition. Methods This retrospective study included 54 patients with clinical diagnosis of possible and probable MSA referred to the Department of Neurology at Medical University of Innsbruck between 2000 and 2018. Neurological work‐up included comprehensive neuropsychological testing including Consortium to Establish a Registry for Alzheimer's Disease (CERAD‐plus) test battery, Frontal Assessment Battery (FAB), digit span test (DST), clock drawing task (CLOX1), and Hospital Anxiety and Depression Scale (HADS‐D). Results The mean MMSE score was 27.6 points. Overall, slight to moderate cognitive impairment was noted in up to 40% of patients, with predominant impairment of executive function and verbal memory. Patients with the cerebellar variant performed significantly worse than patients with the parkinsonian type (P < 0.05) in a screening of executive functions (FAB) and in phonemic verbal fluency. Depression and anxiety scores were elevated in 28% and 22% of MSA patients, respectively. Cognitive profile, depression, and anxiety levels were comparable between patients with and without OH. Interpretation Cognitive deficits are relatively frequent in MSA and primarily affect executive functions and verbal memory. Future comparative studies including Parkinson dementia, Lewy body disease, and MSA cases with and without OH are required to elucidate disease‐specific cognitive profiles in these synucleinopathies and to examine the influence of cardiovascular autonomic dysfunction on cognitive function in MSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.