We have isolated and characterized the cDNA encoding nucleoside triphosphate diphosphohydrolase 6 (NTPDase6), a novel member of the ecto-nucleoside triphosphate diphosphohydrolase family. The rat-brain-derived cDNA has an open reading frame of 1365 bp encoding a protein of 455 amino acid residues, a calculated molecular mass of 49971 Da and a predicted N-terminal hydrophobic sequence. It shares 86% sequence identity with the human CD39L2 sequence and 48% and 51% identity respectively with sequences of the two related human and murine nucleoside diphosphatases (CD39L4, NTPDase5/ER-UDPase). The mRNA was expressed in all tissues investigated, revealing two major transcripts with differing abundances. PCR analysis suggests a single open reading frame. A Myc-His-tagged NTPDase6 was expressed in Chinese hamster ovary (CHO) and PC12 cells for immunological analysis and protein isolation. The protein was contained in membrane fractions of transfected CHO cells and occurred in a soluble form in the cell culture supernatants. NTPDase6 preferentially hydrolysed nucleoside 5'-diphosphates. With different substrates the order of activity was GDP>IDP>>UDP,CDP>>ADP. Nucleoside 5'-triphosphates were hydrolysed only to a minor extent and no hydrolysis of nucleoside 5'-monophosphates was observed. The enzyme was strongly and equally activated by Ca(2+) and Mg(2+) and had a K(m) for GDP of 211 microM. The immunohistochemical analysis of transfected CHO and PC12 cells suggests that NTPDase6 is associated with the Golgi apparatus and to a small extent also with the plasma membrane. The enzyme might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyse the hydrolysis of extracellular nucleotides.
We have isolated and characterized the cDNA encoding nucleoside triphosphate diphosphohydrolase 6 (NTPDase6), a novel member of the ecto-nucleoside triphosphate diphosphohydrolase family. The rat-brain-derived cDNA has an open reading frame of 1365 bp encoding a protein of 455 amino acid residues, a calculated molecular mass of 49971 Da and a predicted N-terminal hydrophobic sequence. It shares 86% sequence identity with the human CD39L2 sequence and 48% and 51% identity respectively with sequences of the two related human and murine nucleoside diphosphatases (CD39L4, NTPDase5/ER-UDPase). The mRNA was expressed in all tissues investigated, revealing two major transcripts with differing abundances. PCR analysis suggests a single open reading frame. A Myc-His-tagged NTPDase6 was expressed in Chinese hamster ovary (CHO) and PC12 cells for immunological analysis and protein isolation. The protein was contained in membrane fractions of transfected CHO cells and occurred in a soluble form in the cell culture supernatants. NTPDase6 preferentially hydrolysed nucleoside 5'-diphosphates. With different substrates the order of activity was GDP>IDP>>UDP,CDP>>ADP. Nucleoside 5'-triphosphates were hydrolysed only to a minor extent and no hydrolysis of nucleoside 5'-monophosphates was observed. The enzyme was strongly and equally activated by Ca(2+) and Mg(2+) and had a K(m) for GDP of 211 microM. The immunohistochemical analysis of transfected CHO and PC12 cells suggests that NTPDase6 is associated with the Golgi apparatus and to a small extent also with the plasma membrane. The enzyme might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyse the hydrolysis of extracellular nucleotides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.