Biocoal pellets were gasified in an updraft high-temperature agent gasification (HTAG) unit with preheated air at 900 °C to study the performance of the air gasification of hydrothermal carbonized biomass. In comparison to raw biomass, hydrothermal carbonization increased the carbon content from 46 to 66% and decreased the oxygen content from 38 to 16%. As a result, the heating value of biomass on a dry basis was increased from 19 to 29 MJ/kg after hydrothermal carbonization. Thermogravimetric analysis (TGA) of biocoal featured early decomposition of hemicellulose and a shoulder attached to the cellulose peak corresponding to lignin decomposition. Char gasification demonstrated a peak near conversion of 0.2. Syngas with 7.9 MJ Nm −3 lower heating value (LHV) was obtained from gasification experiments performed in the pilot-scale gasifier. The maximum cold gas efficiency was 80% at the lowest equivalence ratio (ER) and also resulted in high-purity syngas. The LHV and cold gas efficiency were higher than that of the previously studied unpretreated biomass pellets. The fuel conversion positively correlated with the fuel residence time in the bed, and almost 99% conversion could be achieved for a residence time of 2 h. The superficial velocity (or hearth load) and specific gasification rate were higher than the reported values of updraft gasifiers because of the high-temperature operation and specific fuel used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.