The impact of airports on ambient air pollution is a major concern due to its impact on public health. This study analyzes the sub-micron total particle number concentration (PNC) as a proxy for ultrafine particles in the immediate vicinity of Berlin-Tegel Airport (TXL) based on a mobile measurement campaign in summer 2019. With predominantly westerly winds, 45 measurement runs took place along a 20–30 km route to the east of the airport. The highlights of the study are as follows: 1. Berlin-Tegel Airport had a distinct but a spatially limited impact on the residential areas to the east of the airport. 2. Particle number concentrations in the lee of the airport are significantly higher than the mean of the entire area. 3. Locations along the eastward extension of the runways are significantly more affected than those outside the approach corridor. 4. The impact of airport operations on PNC in the adjacent neighborhood is comparable to the combined impact of busy roads in the area. The closure of Berlin-Tegel Airport at the end of 2020 should have considerably improved the air quality in the residential areas in the close vicinity of the airport.
Airports contribute substantially to ultrafine particle (UFP; <100 nm) concentrations on a local scale. These UFPs, which derive mainly from combustion processes, are generated during take-off and landing of aircraft, during aircraft movements on the tarmac, when engines and turbines are started, and by vehicles transporting goods and people on the airfield. UFPs are considered particularly harmful to human health as their small size enables them to pass far into the human body. This study investigates the extent to which particle number concentrations (PNCs) sized 7–2,000 nm respond to the cessation of air traffic due to the closure of a major airport. PNCs and wind data were monitored with a 5 s resolution at one location on the airfield of Berlin-Tegel Airport (TXL). The station was located 600 –640 m east of the runways and thus downwind of the runways for the predominant wind direction. Observations took place 24 h per day every day for about 3 weeks before and 3 weeks after the closure of the airport. During the measurement campaign, a total of 2,507 take-offs and landings took place. Including all wind directions, this study shows 30 %–40% lower PNCs on average, 2.5-fold lower maximum values as well as a 3-fold lower PNC spread after the closure of the airport. These differences are evident only during the day with active flight operations, and not during the nighttime flight ban. Downwind of the airfield, differences are even higher. After the closure of the airport, average PNCs drop by 70%, maxima by 85%, and variability is reduced by almost 90%. 70% lower and 30% less frequent PNC peaks occur downwind of the airport after flight operations are discontinued. This unique natural experiment allows for relatively clear conclusions about the relevance of airport operations on PNCs in the airfield area. The measurements carried out before and after the closure allow a direct comparison of the PNCs during airport operations and without any. Thus, our study reveals the change in UFP concentration that can be achieved through a reduction in flight operations.
<p>Airports contribute significantly to the concentration of ultrafine particles (UFP) at the local level. UFP from combustion processes are produced when aircraft take off and land, during aircraft movements on the tarmac, when turbines are started, but also by vehicles transporting goods and people on the airfield. UFP are considered particularly harmful to human health due to their large surface area. They can also penetrate far into the human body due to their small size.</p> <p>This study examines the extent to which particle number concentration (PNC) responds to the cessation of air traffic due to the relocation of an airport. PNC and wind data were measured at one station on the airfield downwind of the runways for the prevailing wind direction for about three weeks each before and after the closure of the airport.</p> <p>We observed a 30 - 40 % drop in PNC after the closure of the airport regardless of the wind direction. 70 % higher PNC on average, 2.5 times higher maximum values as well as a three times higher dispersion of PNC occured with wind from the direction of the airport before the closure of the airport than afterwards. These differences are only evident during the day when air traffic is active and not during the nighttime flight restrictions. More frequent and higher concentration peaks occur in conjunction with wind from the airport before flight operations ceased.</p> <p>The special circumstances resulting from the relocation of the airport allow clear conclusions to be drawn about the importance of airport operations for PNC in the area of the airfield. As the study took place under Covid-19 pandemic conditions, it shows the impact of aircraft movements on PNC, but does not allow conclusions about air pollution during normal air traffic. Further studies or modelling on the spatial dispersion of airport-related air pollutants and thus on the exposure of the population living and working nearby can close the gap on health effects of air traffic.</p> <p>The study has been published as Fritz S., Aust S. and Sauter T. (2022): Impact of the closure of Berlin-Tegel Airport on ultrafine particle number concentrations on the airfield. Front. Environ. Sci. 10:1061584, doi: 10.3389/fenvs.2022.1061584. The study was supported by the German Federal Ministry of Education and Research (BMBF) under grant FKZ 01LP 1912B (Urban Climate under Change, Phase II, Module 3DO + M).</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.