The concentration-dependence of the diffusion and sedimentation coefficients (k(D) and k(s), respectively) of a protein can be used to determine the second virial coefficient (B₂), a parameter valuable in predicting protein-protein interactions. Accurate measurement of B₂ under physiologically and pharmaceutically relevant conditions, however, requires independent measurement of k(D) and k(s) via orthogonal techniques. We demonstrate this by utilizing sedimentation velocity (SV) and dynamic light scattering (DLS) to analyze solutions of hen-egg white lysozyme (HEWL) and a monoclonal antibody (mAb1) in different salt solutions. The accuracy of the SV-DLS method was established by comparing measured and literature B₂ values for HEWL. In contrast to the assumptions necessary for determining k(D) and k(s) via SV alone, k(D) and ks were of comparable magnitudes, and solution conditions were noted for both HEWL and mAb1 under which 1), k(D) and k(s) assumed opposite signs; and 2), k(D) ≥k(s). Further, we demonstrate the utility of k(D) and k(s) as qualitative predictors of protein aggregation through agitation and accelerated stability studies. Aggregation of mAb1 correlated well with B₂, k(D), and k(s), thus establishing the potential for k(D) to serve as a high-throughput predictor of protein aggregation.
Background: Monoclonal antibodies and Fc fusion proteins contain an IgG Fc moiety, which is associated with various degradation processes, including aggregation. Results: Fc unfolding is triggered by the protonation of acidic residues and depends on the IgG subclass and C H 2 domain glycosylation. Conclusion: Fc aggregation in acidic conditions is determined by C H 2 stability. Significance: Understanding Fc aggregation is important for improving the quality of Fc-based therapeutics.
The results indicate that anion binding mediates aggregation by lowering mAb conformational stability and reduced valence. Our observations support an agitation-induced particulation model in which anions enhance the partitioning and unfolding of mAbs at the air/water interface. Aggregation predominantly occurs at this interface; refreshing of the surface during agitation releases the insoluble aggregates into bulk solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.