In light of the relationship of lungfish to the origin of tetrapods, information on the respiratory biology of lungfish can give insight into the functional morphological and physiological prerequisites for the conquest of land by the first tetrapods. Stereological methods were employed in order to determine the respiratory surface area and thickness of the water-blood barrier or air-blood of the gills, lungs, and skin, respectively, of the South American lungfish Lepidosiren paradoxa. The morphometric diffusing capacity was then determined by multiplying by the appropriate Krogh diffusion constants (K). Our results indicate a total diffusing capacity of all respiratory organs of 0.11 mL min(-1) mmHg(-1) kg(-1), which is more than twice the value of the physiological diffusion capacity (approximately 0.04 mL min(-1) mmHg(-1) kg(-1)). Of this, 99.15% lies in the lungs, 0.85% in the skin, and only 0.0013% in the gills. Since K for CO(2) is 20-25 times greater than for O(2), diffusing capacity of CO(2) through the skin is potentially important. That of the gills, however, is negligible, raising the question as to their function. Our results indicate that the morphological prerequisites for terrestrial survival with regard to supporting aerobic metabolism already existed in the lungfish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.