The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical application. The synthesis is straightforward and reproducible and thus easily translatable into a good manufacturing practice environment.
Article first published online 16 June 2015.Supplemental Digital Content is Available in the Text.
Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3awue1/wue1) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3awue1/wue1 mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.
First line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny. Exposure to high acetaminophen concentrations causes liver toxicity, which is well investigated in different model organisms. However, sub-liver-toxic concentrations have not been experimentally investigated with respect to ADHD endophenotypes such as hyperactivity. We used zebrafish to investigate the potential impact of acetaminophen exposure on locomotor activity levels, and compared it to the established zebrafish Latrophilin 3 (Lphn3) ADHD-model. We determined the sub-liver-toxic concentration of acetaminophen in zebrafish larvae and treated wild-type and lphn3.1 knockdown larvae with increasing concentrations of acetaminophen. We were able to confirm that lphn3.1 knockdown alone causes hyperactivity, strengthening the implication of Lphn3 dysfunction as an ADHD risk factor. Neither acute nor chronic exposure to acetaminophen at sub-liver-toxic concentrations in wild-type or lphn3.1 knock-downs increases locomotor activity levels. Together our findings show that embryonic to larval exposure to acetaminophen does not cause hyperactivity in zebrafish larvae. Furthermore, there are no additive and/or synergistic effects of acetaminophen exposure in a susceptible background induced by knock-down of lphn3.1. Our experimental study suggests that there is, at least in zebrafish larvae, no direct link between embryonic acetaminophen exposure and hyperactivity. Further work is necessary to clarify this issue in humans.
Summary statementWe investigated potential functions of Fndc3a during caudal fin development and regeneration in zebrafish. Reduced function interferes with correct epidermal cells structure and implies a role during vertebrate extremity development.AbstractInherited genetic alterations are often found to be disease-causing factors of patient phenotypes. To unravel the molecular consequences of newly identified factors functional investigations in vivo are eminent. We investigated molecular functions of FNDC3A (Fibronectin Domain Containing Protein 3A; HUGO), a novel candidate gene for split-hand/foot malformations (SHFM) in humans, by utilizing zebrafish (Danio rerio) as a vertebrate model. Patients with congenital SHFM display prominent limb malformations, which are caused by disturbance of limb development due to defects in apical ectodermal ridge (AER) establishment and maintenance. Initial gene expression and protein localization studies clarified the presence of fndc3a in developing and regenerating fins of zebrafish. For functional studies we established a hypomorphic fndc3a mutant line (fndc3awue1/wue1) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. Furthermore, fndc3awue1/wue1 mutants display abnormal collagen localization, actinotrichia breakup and cellular defects in epidermal cells during caudal fin development. The observed effects are only temporary and later result in rather normal fin development in adults. In accordance with early fin development, proper caudal fin regeneration in adult fndc3awue1/wue1 mutants is hampered by interference with actinotrichia formation and epidermal cell abnormalities. Investigation of cellular matrix formation implied that loss of ECM structure is a common cause for both phenotypes. Our results thereby provide a molecular link between Fndc3a function during both developmental processes in zebrafish and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development in vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.