Abnormalities of chromosome number are the most common genetic aberrations in cancer. The mechanisms regulating the fidelity of mitotic chromosome transmission in mammalian cells are therefore of great interest. Here we show that human cells without an hSecurin gene lose chromosomes at a high frequency. This loss was linked to abnormal anaphases during which cells underwent repetitive unsuccessful attempts to segregate their chromosomes. The abnormal mitoses were associated with biochemical defects in the activation of separin, the sister-separating protease, rendering it unable to cleave the cohesin subunit Scc1 efficiently. These results illuminate the function of mammalian securin and show that it is essential for the maintenance of euploidy.
Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been developed in an attempt to achieve unbiased amplification. Many of these approaches are suitable for subsequent cytogenetic analyses using conventional methodologies such as comparative genomic hybridization (CGH) to metaphase spreads. However, attempts to harness array-CGH for single-cell analysis to provide improved resolution have been disappointing. Here we describe a strategy that combines single-cell amplification using GenomePlex library technology (GenomePlex® Single Cell Whole Genome Amplification Kit, Sigma-Aldrich, UK) and detailed analysis of genomic copy number changes by high-resolution array-CGH. We show that single copy changes as small as 8.3 Mb in single cells are detected reliably with single cells derived from various tumor cell lines as well as patients presenting with trisomy 21 and Prader–Willi syndrome. Our results demonstrate the potential of this technology for studies of tumor biology and for clinical diagnostics.
The rapid spread of the use of new 24-color karyotyping techniques has preceded their standardization. This is best documented by the fact that the exact resolution limits have not yet been defined. Indeed, it is shown here that a substantial proportion of interchromosomal aberrations will be missed by all multicolor karyotyping systems currently in use. We demonstrate that both the sensitivity and the specificity of 24-color karyotyping critically depend on the fluorochrome composition of chromosomes involved in an interchromosomal rearrangement. As a solution, we introduce a conceptual change in probe labeling. Seven-fluorochrome sets that overcome many of the current limitations are described, and examples of their applications are shown. The criteria presented here for an optimized probe-set design and for the estimation of resolution limits should have important consequences for pre- and postnatal diagnostics and for research applications.
Purpose: Metastases in distant organs are the major cause of death for cancer patients, and bone marrow is a prominent homing organ for early disseminated cancer cells. However, it remains still unclear which of these cells evolve into overt metastases. We therefore established a new approach based on the analysis of viable and proliferating cancer cells by single-cell comparative genomic hybridization.Experimental Design: The bone marrow of early-stage breast tumor patients (pN 0 M 0 ) was screened for tumor cells by immunostaining. By applying special short-term culturing, we selected for viable and proliferative tumor cells. The short-term culturing allowed us to evaluate the proliferative potential of micrometastatic cells, which we had previously shown to represent an independent prognostic marker. We assessed genomic changes in single disseminated cancer cells by single-cell comparative genomic hybridization.Results: We found that these viable disseminated cancer cells already had a plethora of copy number changes in their genome. All of these cells showed chromosomal copy number changes with a substantial intercellular heterogeneity and differences to the matching primary tumors.Conclusions: The established experimental strategy might pave the way for the identification of metastatic stem cells in cancer patients. Our preliminary results support the new concept that early disseminated cancer cells evolve independently from their primary tumor.
Age is the largest single risk factor for the development of cancer in mammals. Age-associated chromosomal changes, such as aneuploidy and telomere erosion, may be vitally involved in the initial steps of tumorigenesis. However, changes in gene expression specific for increased aneuploidy with age have not yet been characterized. Here, we address these questions by using a panel of fibroblast cell lines and lymphocyte cultures from young and old age groups. Oligonucleotide microarrays were used to characterize the expression of 14,500 genes. We measured telomere length and analyzed chromosome copy number changes and structural rearrangements by multicolor interphase fluorescence in situ hybridization and 7-fluorochrome multiplex fluorescence in situ hybridization, and we tried to show a relationship between gene expression patterns and chromosomal changes. These analyses revealed a number of genes involved in both the cell cycle and proliferation that are differently expressed in aged cells. More importantly, our data show an association between age-related aneuploidy and the gene expression level of genes involved in centromere and kinetochore function and in the microtubule and spindle assembly apparatus. To verify that some of these genes may also be involved in tumorigenesis, we compared the expression of these genes in chromosomally stable microsatellite instability and chromosomally unstable chromosomal instability colorectal tumor cell lines. Three genes (Notch2, H2AFY2, and CDC5L) showed similar expression differences between microsatellite instability and chromosomal instability cell lines as observed between the young and old cell cultures suggesting that they may play a role in tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.