The iron transport protein, transferrin, and the iron storage protein ferritin were examined immunohistochemically along with iron in a number of brain regions from normal and aged humans. Two age groups were examined: a middle-aged group (28-49 years), and an older group (60-90 years). Transferrin, ferritin, and iron are found throughout all brain regions examined, predominantly in the perikaryal cytoplasm of cells that are small and round, fitting the description of oligodendrocytes. These cells are present in the optic nerve and in both the gray and white matter of the cerebral cortex, cerebellum, and olfactory bulb in both age groups. Ferritin is also found in microglial cells in the gray matter of most of these brain regions. In the subcortical regions examined (corpus striatum, hippocampus, amygdala), in addition to oligodendrocytes, astrocytes can frequently be observed that contain transferrin, ferritin, and iron. There is an age-related alteration in cell labeling: astrocytes in both gray and white matter contained transferrin in the oldest age group, whereas in the younger group the subcortical transferrin immunoreactivity was confined mostly to oligodendrocytes. Ferritin in the subcortical brain regions is also present in astrocytes but is primarily confined to those in the gray matter, even in the oldest age group. Iron is found predominantly in oligodendrocytes, although a few iron-positive astrocytes and microglia can be identified. These results indicate that (1) normally oligodendrocytes contain much of the iron and iron-binding proteins found in the brain; and (2) an increase in age is associated with altered cellular distribution of iron-binding proteins, but the altered distribution is specific to glial cells. These results suggest glial cells may have previously undescribed functions related to metal regulation and sequestration.
In this study, we show that Salmonella produces an O-antigen capsule coregulated with the fimbria-and cellulose-associated extracellular matrix. Structural analysis of purified Salmonella extracellular polysaccharides yielded predominantly a repeating oligosaccharide unit similar to that of Salmonella enterica serovar Enteritidis lipopolysaccharide O antigen with some modifications. Putative carbohydrate transport and regulatory operons important for capsule assembly and translocation, designated yihU-yshA and yihVW, were identified by screening a random transposon library with immune serum generated to the capsule. The absence of capsule was confirmed by generating various isogenic ⌬yih mutants, where yihQ and yihO were shown to be important in capsule assembly and translocation. Luciferase-based expression studies showed that AgfD regulates the yih operons in coordination with extracellular matrix genes coding for thin aggregative fimbriae and cellulose. Although the capsule did not appear to be important for multicellular behavior, we demonstrate that it was important for survival during desiccation stress. Since the yih genes are conserved in salmonellae and the O-antigen capsule was important for environmental persistence, the formation of this surface structure may represent a conserved survival strategy.
Background: Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1) are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques.
In the budding yeast Saccharomyces cerevisiae, entry into meiosis and its successful completion depend on two positive regulators, Ime1 and Ime2. Ime1 is a transcriptional activator that is required for transcription of IME2, a serine/threonine protein kinase. We show that in vivo Ime2 associates with Ime1, that in vitro Ime2 phosphorylates Ime1, and that in living cells the stability of Ime1 depends on Ime2. Diploid cells with IME2 deleted show an increase in the level of Ime1, whereas haploid cells overexpressing IME2 show a decrease in the stability of Ime1. Furthermore, the level of Ime1 depends on the kinase activity of Ime2. Using a mutation in one of the ATPase subunits of the proteasome, RPT2, we demonstrate that Ime1, amino acids 270 to 360, is degraded by the 26S proteasome. We also show that Ime2 itself is an extremely unstable protein whose expression in vegetative cultures is toxic. We propose that a negative-feedback loop ensures that the activity of Ime1 will be restricted to a narrow window.Successful progression and completion of the mitotic cell cycle depends on transcriptional and proteolytic regulation. These two processes determine the availability of cyclins and cyclin-dependent kinase (CDK) inhibitors that govern the sequential activation of CDKs (18,28,31,35). Initiation and progression through the meiotic cycle should also be subjected to transcriptional and proteolytic regulation. Indeed, in budding yeast a transcriptional cascade governs initiation and progression through the meiotic cell cycle (4). Yet there is no direct evidence concerning proteolysis of either positive or negative meiotic regulators. This report focuses on the regulated degradation of one of the two positive regulators of meiosis in Saccharomyces cerevisiae, Ime1, by the other, Ime2.IME1 encodes a transcriptional activator (30, 47) that is necessary for the transcription of meiosis-specific genes (48). Ime1 is tethered to promoters of early meiosis-specific genes, such as IME2, by a specific DNA-binding protein, Ume6 (39). Diploid cells with deletions of IME1 arrest at G 1 prior to the initiation of premeiotic DNA replication (22). The transcription of IME1 is regulated by nutrients. In vegetative cultures with glucose as the sole carbon source, IME1 is silent, but in the presence of acetate, low levels of IME1 mRNA are observed (22). Under meiotic conditions, i.e., nitrogen depletion and the presence of a nonfermentable carbon source such as acetate, transcription of IME1 is induced transiently in MATa/ MAT␣ diploids (22). It is not known whether this transient transcription reflects transient availability of the Ime1 protein.In addition, the IME1 promoter is subject to positive autoregulation (40,43,44), as well as negative-feedback regulation by both Ime1 and Ime2 (43,48,49).Another important regulator of meiosis and sporulation is the serine/threonine protein kinase Ime2 (12,24,34,48,49). Diploid cells with deletions of IME2 show a 5-to 12-h delay in the transcription of early meiosis-specific genes, a reduction...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.