The widespread occurrence of lower Eocene chert and porcellanite has been viewed as a major paleoceanographic issue since the advent of ocean drilling, and both biotic and abiotic forcings have been proposed to explain it. We present a reconstruction of indurated siliceous sediment (ISS) and preserved biosiliceous sediment (PBS) occurrences in the Atlantic Ocean through the Paleocene and Eocene (~66 through 34 Ma). ISS and PBS distributions reveal dissimilar temporal trends, with the peak of ISS occurrences coinciding with the Early Eocene Climatic Optimum, in line with previous studies. PBS occurrences show a generally increasing trend culminating between 44 and 43 Ma. The common co-occurrence of ISS and PBS, and their coherent geographic distribution lends strong support to the biogenic origin of the precursor to the widespread Paleogene ISS, and argues against an inorganic mode of early Cenozoic chert and porcellanite precipitation. Weight per cent biogenic opal records and trends in linear sedimentation rates indicate two plausible modes of silicification: 1) silicification due to prolonged exposure of 2 biogenic opal-rich sediments to corrosive bottom waters; and 2) silicification due to elevated pressures and temperatures caused by rapid burial of biogenic opal-rich deposits. The confinement of ISS and PBS to proximal sites along continental margins points to the reliance of siliceous sedimentation through the Paleocene and Eocene on terrestrial supply of dissolved silicon.Consistent with this, quantitative siliceous microfossil assemblage records from the Blake Nose in the NW Atlantic indicate that the nutrient-rich marginal rather than oligotrophic pelagic settings hosted the majority of siliceous plankton production through the early Paleogene.The inorganic SiO2 precipitation model is unlikely to have been the dominant mechanism responsible for ubiquitous occurrences of early Paleogene ISS. We favor the biogenic ISS precursor scenario and reconcile it with the low-productivity early Cenozoic oceans by showing that large volumes of biogenic silica were supplied to the western North Atlantic Ocean from the North American margin through the Paleocene and Eocene. Dissolution of this surplus silica was facilitated by an early southwestward flow of young, SiO2-depleted waters from the North Atlantic.
Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in finegrained sandstone to muddy siltstone. Type II ash is characterised by very high TiO 2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.