Gastrointestinal stromal tumors (GIST) are characterized by a strong KIT receptor activation most often resulting from KIT mutations. In a smaller subgroup of tumors without KIT mutations, analogous activating mutations are found in the platelet-derived growth factor receptor a (PDGFRa) gene. Both PDGFRa and KIT receptors are targets of the tyrosine kinase inhibitor imatinib (Glivec) which has improved the treatment of advanced GISTs significantly. However, a subgroup of tumors show a secondary progress under therapy with imatinib after initial response. One possible mechanism of secondary resistance is the development of newly acquired KIT mutations. In the present study, we evaluated the frequency of such secondary KIT mutations in a series of GIST patients in which tumor tissue was resected under treatment. We examined one to seven different tumor areas in 32 cases (total of 104 samples) and found up to four newly acquired KIT mutations in 14 patients (43.8%). These were always located in exons encoding the first or second tyrosine kinase domain (exon 13, 14, or 17). Mutations were found only in a subset of samples analyzed from each case whereas others retained the wild-type sequence in the same region. There was never more than one new mutation in the same sample. Consistent with a secondary clonal evolution, the primary mutation was always detectable in all samples from each tumor. According to our results, the identification of newly acquired KIT mutations in addition to the primary mutation is dependent on the number of tissue samples analyzed and has high implications for further therapeutic strategies.
Clinical evidence demonstrates that treatment with immune checkpoint inhibitor immunotherapy agents can have considerable benefit across multiple tumours. However, there is a need for the development of predictive biomarkers that identify patients who are most likely to respond to immunotherapy. Comprehensive characterisation of tumours using genomic, transcriptomic, and proteomic approaches continues to lead the way in advancing precision medicine. Genetic correlates of response to therapy have been known for some time, but recent clinical evidence has strengthened the significance of high tumour mutational burden (TMB) as a biomarker of response and hence a rational target for immunotherapy. Concordantly, immune checkpoint inhibitors have changed clinical practice for lung cancer and melanoma, which are tumour types with some of the highest mutational burdens. TMB is an implementable approach for molecular biology and/or pathology laboratories that provides a quantitative measure of the total number of mutations in tumour tissue of patients and can be assessed by whole genome, whole exome, or large targeted gene panel sequencing of biopsied material. Currently, TMB assessment is not standardised across research and clinical studies. As a biomarker that affects treatment decisions, it is essential to unify TMB assessment approaches to allow for reliable, comparable results across studies. When implementing TMB measurement assays, it is important to consider factors that may impact the method workflow, the results of the assay, and the interpretation of the data. Such factors include biopsy sample type, sample quality and quantity, genome coverage, sequencing platform, bioinformatic pipeline, and the definitions of the final threshold that determines high TMB. This review outlines the factors for adoption of TMB measurement into clinical practice, providing an understanding of TMB assay considerations throughout the sample journey, and suggests principles to effectively implement TMB assays in a clinical setting to aid and optimise treatment decisions.
BackgroundThe approval of vemurafenib in the US 2011 and in Europe 2012 improved the therapy of not resectable or metastatic melanoma. Patients carrying a substitution of valine to glutamic acid at codon 600 (p.V600E) or a substitution of valine to leucine (p.V600K) in BRAF show complete or partial response. Therefore, the precise identification of the underlying somatic mutations is essential. Herein, we evaluate the sensitivity, specificity and feasibility of six different methods for the detection of BRAF mutations.MethodsSamples harboring p.V600E mutations as well as rare mutations in BRAF exon 15 were compared to wildtype samples. DNA was extracted from formalin-fixed paraffin-embedded tissues by manual micro-dissection and automated extraction. BRAF mutational analysis was carried out by high resolution melting (HRM) analysis, pyrosequencing, allele specific PCR, next generation sequencing (NGS) and immunohistochemistry (IHC). All mutations were independently reassessed by Sanger sequencing. Due to the limited tumor tissue available different numbers of samples were analyzed with each method (82, 72, 60, 72, 49 and 82 respectively).ResultsThere was no difference in sensitivity between the HRM analysis and Sanger sequencing (98%). All mutations down to 6.6% allele frequency could be detected with 100% specificity. In contrast, pyrosequencing detected 100% of the mutations down to 5% allele frequency but exhibited only 90% specificity. The allele specific PCR failed to detect 16.3% of the mutations eligible for therapy with vemurafenib. NGS could analyze 100% of the cases with 100% specificity but exhibited 97.5% sensitivity. IHC showed once cross-reactivity with p.V600R but was a good amendment to HRM.ConclusionTherefore, at present, a combination of HRM and IHC is recommended to increase sensitivity and specificity for routine diagnostic to fulfill the European requirements concerning vemurafenib therapy of melanoma patients.
Purpose: To identify novel mechanisms of resistance to thirdgeneration EGFR inhibitors in patients with lung adenocarcinoma that progressed under therapy with either AZD9291 or rociletinib (CO-1686).Experimental Design: We analyzed tumor biopsies from seven patients obtained before, during, and/or after treatment with AZD9291 or rociletinib (CO-1686). Targeted sequencing and FISH analyses were performed, and the relevance of candidate genes was functionally assessed in in vitro models.Results: We found recurrent amplification of either MET or ERBB2 in tumors that were resistant or developed resistance to third-generation EGFR inhibitors and show that ERBB2 and MET activation can confer resistance to these compounds. Furthermore, we identified a KRAS G12S mutation in a patient with acquired resistance to AZD9291 as a potential driver of acquired resistance. Finally, we show that dual inhibition of EGFR/MEK might be a viable strategy to overcome resistance in EGFR-mutant cells expressing mutant KRAS.Conclusions: Our data suggest that heterogeneous mechanisms of resistance can drive primary and acquired resistance to third-generation EGFR inhibitors and provide a rationale for potential combination strategies.
Introduction: Although KRAS mutations in NSCLC have been considered mutually exclusive driver mutations for a long time, there is now growing evidence that KRASmutated NSCLC represents a genetically heterogeneous subgroup. We sought to determine genetic heterogeneity with respect to cancer-related co-mutations and their correlation with different KRAS mutation subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.