Gold nanoparticles are widely used in biomedical imaging and diagnostic tests. Based on their established use in the laboratory and the chemical stability of Au(0), gold nanoparticles were expected to be safe. The recent literature, however, contains conflicting data regarding the cytotoxicity of gold nanoparticles. Against this background a systematic study of water-soluble gold nanoparticles stabilized by triphenylphosphine derivatives ranging in size from 0.8 to 15 nm is made. The cytotoxicity of these particles in four cell lines representing major functional cell types with barrier and phagocyte function are tested. Connective tissue fibroblasts, epithelial cells, macrophages, and melanoma cells prove most sensitive to gold particles 1.4 nm in size, which results in IC(50) values ranging from 30 to 56 microM depending on the particular 1.4-nm Au compound-cell line combination. In contrast, gold particles 15 nm in size and Tauredon (gold thiomalate) are nontoxic at up to 60-fold and 100-fold higher concentrations, respectively. The cellular response is size dependent, in that 1.4-nm particles cause predominantly rapid cell death by necrosis within 12 h while closely related particles 1.2 nm in diameter effect predominantly programmed cell death by apoptosis.
Gold nanoparticles (AuNPs) are generally considered nontoxic, similar to bulk gold, which is inert and biocompatible. AuNPs of diameter 1.4 nm capped with triphenylphosphine monosulfonate (TPPMS), Au1.4MS, are much more cytotoxic than 15-nm nanoparticles (Au15MS) of similar chemical composition. Here, major cell-death pathways are studied and it is determined that the cytotoxicity is caused by oxidative stress. Indicators of oxidative stress, reactive oxygen species (ROS), mitochondrial potential and integrity, and mitochondrial substrate reduction are all compromised. Genome-wide expression profiling using DNA gene arrays indicates robust upregulation of stress-related genes after 6 and 12 h of incubation with a 2 x IC50 concentration of Au1.4MS but not with Au15MS nanoparticles. The caspase inhibitor Z-VAD-fmk does not rescue the cells, which suggests that necrosis, not apoptosis, is the predominant pathway at this concentration. Pretreatment of the nanoparticles with reducing agents/antioxidants N-acetylcysteine, glutathione, and TPPMS reduces the toxicity of Au1.4MS. AuNPs of similar size but capped with glutathione (Au1.1GSH) likewise do not induce oxidative stress. Besides the size dependency of AuNP toxicity, ligand chemistry is a critical parameter determining the degree of cytotoxicity. AuNP exposure most likely causes oxidative stress that is amplified by mitochondrial damage. Au1.4MS nanoparticle cytotoxicity is associated with oxidative stress, endogenous ROS production, and depletion of the intracellular antioxidant pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.