The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. Here, we generated four neutralizing nanobodies that target the receptor-binding domain of the SARS-CoV-2 spike protein. We defined two distinct binding epitopes using x-ray crystallography and cryo-electron microscopy. Based on the structures, we engineered multivalent nanobodies with more than 100-fold improved neutralizing activity than monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor-binding competition, while other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion, and rendered the virions non-infectious.
A considerable potential for neurogenesis has been identified in the epileptic rat hippocampus. Here, we explore this feature in human patients suffering from chronic mesial temporal lobe epilepsy. Immunohistochemical detection of the neurodevelopmental antigen nestin was used to detect neural precursor cells, and cell-type specific markers were employed to study their histogenetic origin and potential for neuronal or glial differentiation. The ontogenetic regulation of nestin-positive precursors was established in human control brains (week 19 of gestation-15 years of age). A striking increase of nestin-immunoreactive cells within the hilus and dentate gyrus could be observed in a group of young patients with temporal lobe epilepsy (TLE) and surgical treatment before age 2 years compared to adult TLE patients and controls. The cellular morphology and regional distribution closely resembled nestin-immunoreactive granule-cell progenitors transiently expressed during prenatal human hippocampus development. An increased Ki-67 proliferation index and clusters of supragranular nestin-immunoreactive cells within the molecular layer of the dentate gyrus were also noted in the group of young TLE patients. Confocal studies revealed colocalization of nestin and the betaIII isoform of tubulin, indicating a neuronal fate for some of these cells. Vimentin was consistently expressed in nestin-immunoreactive cells, whereas cell lineage-specific markers, i.e., glial fibrillary acidic protein, MAP2, neurofilament protein, NeuN, or calbindin D-28k failed to colocalize. These findings provide evidence for increased neurogenesis in pediatric patients with early onset of temporal lobe epilepsy and/or point towards a delay in hippocampal maturation in a subgroup of patients with TLE.
Purpose: Glioblastoma is a highly malignant, invariably fatal brain tumor for which effective pharmacotherapy remains an unmet medical need.Experimental Design: Screening of a compound library of 160 synthetic and natural toxic substances identified the antihelmintic niclosamide as a previously unrecognized candidate for clinical development. Considering the cellular and interindividual heterogeneity of glioblastoma, a portfolio of short-term expanded primary human glioblastoma cells (pGBM; n ¼ 21), common glioma lines (n ¼ 5), and noncancer human control cells (n ¼ 3) was applied as a discovery platform and for preclinical validation. Pharmacodynamic analysis, study of cell-cycle progression, apoptosis, cell migration, proliferation, and on the frequency of multipotent/self-renewing pGBM cells were conducted in vitro, and orthotopic xenotransplantation was used to confirm anticancer effects in vivo.Results: Niclosamide led to cytostatic, cytotoxic, and antimigratory effects, strongly reduced the frequencies of multipotent/self-renewing cells in vitro, and after exposure significantly diminished the pGBMs' malignant potential in vivo. Mechanism of action analysis revealed that niclosamide simultaneously inhibited intracellular WNT/CTNNB1-, NOTCH-, mTOR-, and NF-kB signaling cascades. Furthermore, combinatorial drug testing established that a heterozygous deletion of the NFKBIA locus in glioblastoma samples could serve as a genomic biomarker for predicting a synergistic activity of niclosamide with temozolomide, the current standard in glioblastoma therapy.Conclusions: Together, our data advocate the use of pGBMs for exploration of compound libraries to reveal unexpected leads, for example, niclosamide that might be suited for further development toward personalized clinical application. Clin Cancer Res; 19(15); 4124-36. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.