In drug discovery and development, classical compartment models and physiologically based pharmacokinetic (PBPK) models are successfully used to analyze and predict the pharmacokinetics of drugs. So far, however, both approaches are used exclusively or in parallel, with little to no cross-fertilization. An approach that directly links classical compartment and PBPK models is highly desirable. We derived a new mechanistic lumping approach for reducing the complexity of PBPK models and establishing a direct link to classical compartment models. The proposed method has several advantages over existing methods: Perfusion and permeability rate limited models can be lumped; the lumped model allows for predicting the original organ concentrations; and the volume of distribution at steady state is preserved by the lumping method. To inform classical compartmental model development, we introduced the concept of a minimal lumped model that allows for prediction of the venous plasma concentration with as few compartments as possible. The minimal lumped parameter values may serve as initial values for any subsequent parameter estimation process. Applying our lumping method to 25 diverse drugs, we identified characteristic features of lumped models for moderate-to-strong bases, weak bases and acids. We observed that for acids with high protein binding, the lumped model comprised only a single compartment. The proposed lumping approach established for the first time a direct derivation of simple compartment models from PBPK models and enables a mechanistic interpretation of classical compartment models.
The structure, interpretation and parameterization of classical compartment models as well as physiologically-based pharmacokinetic (PBPK) models for monoclonal antibody (mAb) disposition are very diverse, with no apparent consensus. In addition, there is a remarkable discrepancy between the simplicity of experimental plasma and tissue profiles and the complexity of published PBPK models. We present a simplified PBPK model based on an extravasation rate-limited tissue model with elimination potentially occurring from various tissues and plasma. Based on model reduction (lumping), we derive several classical compartment model structures that are consistent with the simplified PBPK model and experimental data. We show that a common interpretation of classical two-compartment models for mAb disposition-identifying the central compartment with the total plasma volume and the peripheral compartment with the interstitial space (or part of it)-is not consistent with current knowledge. Results are illustrated for the monoclonal antibodies 7E3 and T84.66 in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.