Vascular endothelial growth factor (VEGF) is essential for the differentiation of the primitive embryonic vascular system and has been implicated in the vascularization of organs. Recently, VEGF has also been proposed to play a role in neural development, neuroprotection, and adult neurogenesis. Here we have investigated the function of VEGF in the developing brain by cre-lox technology. We show that VEGF produced by the embryonic neuroectoderm is required for the vascularization and the development of the brain. Both the invasion and the directed growth of capillaries were severely impaired in the fore-, mid- and hindbrain of VEGF(lox/lox)/nestin-cre mouse embryos homozygous for a VEGF mutation in the neural tube. These observations demonstrate that VEGF, via local secretion by neural progenitors, induces brain angiogenesis and guides the growth of capillaries toward the ventricular zone. VEGF deficiency led to developmental retardation and progressive destruction of neural tissue in all brain regions. The defect was most pronounced in telencephalic structures, such as the hippocampus, and caused microcephaly. Taken together, the findings establish the critical importance of neuroectoderm-derived VEGF in the morphogenesis of the brain. VEGF acts as a key regulator of brain angiogenesis and provides instructive cues for the correct spatial organization of the vasculature.
Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.
SUMMARYDuring leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitindependent turnover of key proteins. Here, we identified a novel plant U-box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA-insensitive mutants abi1-1 and abi2-1, but enhanced in the ABA-hypersensitive mutant era1-3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin-dependent degradation via the 26S proteasome to prevent premature senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.