Under inflammatory conditions, activated microglia are capable of producing proinflammatory cytokines that are reported to influence cell-to-cell communication. The present study was performed to evaluate the influence of microglial activation on the coupling efficiency of the astroglial network. Primary astrocyte cultures of newborn rats were cocultured with either 5% (M5) or 30% (M30) microglia. Microglial activation (rounded phagocytotic phenotype) was investigated using the monoclonal anti-ED1 antibody, and immunofluorescence with a polyclonal anti-Cx43 antibody was used to study astroglial Cx43 expression and distribution. Functional coupling of astrocytes was evaluated by monitoring the transfer of microinjected Lucifer yellow into neighboring cells. The data obtained can be summarized as follows: astroglia/M30 cocultures contained significantly fewer resting microglia and significantly more activated microglia than the M5 cocultures; significantly reduced astroglial Cx43 staining was found in M30 cocultures concurrently with a reduced number of dye coupled astrocytes; and the positive correlation of percent activated microglia with reduced astroglial Cx43 expression was highly significant, indicating that the degree of intercellular communication in the astroglial network may be modulated by the activation of microglia under in vitro conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.