We have investigated interferon-κ (IFN-κ) regulation in the context of human papillomavirus (HPV)-induced carcinogenesis using primary human foreskin keratinocytes (HFK), immortalized HFKs encoding individual oncoproteins of HPV16 (E6, E7, and E6/E7), and cervical carcinoma cells. Here, IFN-κ was suppressed in the presence of E6, whereas its expression was not affected in HFKs or E7-immortalized HFKs. Transcription could be reactivated after DNA demethylation but was decreased again upon drug removal. Partial reactivation could also be accomplished when E6 was knocked down, suggesting a contribution of E6 in IFN-κ de novo methylation. We identified a single CpG island near the transcriptional start site as being involved in selective IFN-κ expression. To prove the functional relevance of IFN-κ in building up an antiviral response, IFN-κ was ectopically expressed in cervical carcinoma cells where protection against vesicular stomatitis virus-mediated cytolysis could be achieved. Reconstitution of IFN-κ was accompanied by an increase of p53, MxA, and IFN-regulatory factors, which was reversed by knocking down either IFN-κ or p53 by small interfering RNA. This suggests the existence of a positive feedback loop between IFN-κ, p53, and components of IFN signaling pathway to maintain an antiviral state. Our in vitro findings were further corroborated in biopsy samples of cervical cancer patients, in which IFN-κ was also downregulated when compared with normal donor tissue. This is the first report showing an epigenetic silencing of type I IFN after HPV16 oncogene expression and revealing a novel strategy on how high-risk HPVs can abolish the innate immune response in their genuine host cells. [Cancer Res 2009;69(22):8718-25]
Loss-of-function mutations in the lipoxygenase (LOX) genes ALOX12B and ALOXE3 are the second most common cause of autosomal recessive congenital ichthyosis. The encoded proteins, 12R-LOX and epidermal LOX-3 (eLOX-3), act in sequence to convert fatty acid substrates via R-hydroperoxides to specific epoxyalcohol derivatives and have been proposed to operate in the same metabolic pathway during epidermal barrier formation. Here, we show that eLOX-3 deficiency in mice results in early postnatal death, associated with similar but somewhat less severe barrier defects and morphological changes than reported earlier for the 12R-LOX-knockout mice. Skin lipid analysis demonstrated that the severity of barrier failure is related to the loss of covalently bound ceramides in both 12R-LOX- and eLOX-3-null mice, confirming a proposed functional linkage of the LOX pathway to ceramide processing and formation of the corneocyte lipid envelope. Furthermore, analysis of free oxygenated fatty acid metabolites revealed strongly reduced levels of hepoxilin metabolites in eLOX-3-deficient epidermis, indicating an additional function of eLOX-3 in mammalian skin as a hepoxilin synthase linked to the 12S-LOX pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.