Terminal balls detected at the 59-end of nascent ribosomal transcripts act as pre-rRNA processing complexes and are detected in all eukaryotes examined, resulting in illustrious Christmas tree images. Terminal balls (also known as SSU-processomes) compaction reflects the various stages of cotranscriptional ribosome assembly. Here, we have followed SSU-processome compaction in vivo by use of a chromatin immunoprecipitation (Ch-IP) approach and shown, in agreement with electron microscopy analysis of Christmas trees, that it progressively condenses to come in close proximity to the 59-end of the 25S rRNA gene. The SSU-processome is comprised of independent autonomous building blocks that are loaded onto nascent pre-rRNAs and assemble into catalytically active pre-rRNA processing complexes in a stepwise and highly hierarchical process. Failure to assemble SSU-processome subcomplexes with proper kinetics triggers a nucleolar surveillance pathway that targets misassembled pre-rRNAs otherwise destined to mature into small subunit 18S rRNA for polyadenylation, preferentially by TRAMP5, and degradation by the 39 to 59 exoribonucleolytic activity of the Exosome. Trf5 colocalized with nascent pre-rRNPs, indicating that this nucleolar surveillance initiates cotranscriptionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.