This paper deals with a model linking bubble dynamics under an acoustic pressure field and production of free radicals in the resulting collapses of this bubble. The bubble dynamics model includes interdiffusion of gas and vapour in the bubble as well as evaporation or condensation at the interface, and it assumes uniformity of the internal pressure and perfect gas law for the gas vapour mixture. At the maximum compression of the bubble, all the reactions of dissociation which can occur are assumed at thermodynamic equilibrium. The local composition (especially in free radicals) in the bubble is then calculated by an algorithm based on free energy minimization using the information concerning the maximum compression provided by the bubble dynamics model resolution. Using this model a comparison of free radicals production has been made for two different driving frequencies (20 kHz and 500 kHz), and at given bubble radius and acoustic pressure, an optimum of liquid bulk temperature has been derived for the production of free radicals very similar to the experimental one concerning oxidation reactions in aqueous phase.
in Wiley Online Library (wileyonlinelibrary.com).Gas-phase adsorption equilibria of diluted mixtures of methyl-ethyl-ketone and isopropylanol on activated carbon were investigated. Experimental isotherms were determined by a constant volume method. Single-component adsorption isotherms were fitted by the frequently used Toth model with good accuracy. Then adsorption isotherms were determined for different binary mixtures (with different initial ratio of the two components). Binary mixtures adsorption isotherms were calculated using the adsorbed solution theory. Ideal adsorbed solution theory (IAST) could not represent experimental data, but it was observed that increasing amount of MEK led to higher nonideality of the mixture. Then UNIversal QUAsi Chemical (UNIQUAC) and nonrandom twoliquids (NRTL) models were considered to describe activity coefficients of the adsorbed phase. The fitted parameters of UNIQUAC model depend on the ratio of the two components, whereas the NRTL model is able to fit all experiments with the same parameters, whatever the initial ratio may be.
Indoor air pollution (IAP), defined by a lot of pollutants at low concentrations (microg m(-3)), is recognized as a major environmental health issue. In order to remove this pollution, biofiltration was investigated in this study. Two biofilters packed with compost and a mixture of compost and activated carbon (AC) were compared during the treatment of an influent with characteristics close to those of IAP. Very high removal efficiencies (RE) were achieved for the two biofilters (RE more than 90% for butyl acetate, butanol, formaldehyde, limonene, toluene and undecane at mass loading from 6-24mg m(-3) h(-1) and 19s empty bed retention time). The fact that high RE of hydrophobic compounds (undecane and limonene) were achieved, along with the results of an abiotic sorption study, lead us to suggest a mechanism including adsorption followed by biodegradation at the interface of the biofilm where microorganisms tend to concentrate near the available substrate. Both chemical reactions with the packing materials and biological degradation led to average RE greater than 91.4% for nitrogen dioxide. It was observed that adding AC to compost had significant effects. First, its buffering capacity led to shorter acclimation duration and more stable operation efficiencies than for the compost biofilter. Secondly, the only compound which was not removed by the compost biofilter, trichloroethylene, was strongly adsorbed by the compost/AC biofilter. Finally, the concentration profile along the two biofilters demonstrated that adding of AC could lead to a reduction of the retention time required to reach the maximal RE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.