Recently we have identified angiostatin, an endogenous angiogenesis inhibitor of 38 kDa which specifically blocks the growth of endothelial cells (O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Cell 79, 315-328; Folkman, J. (1995) Nat. Med. 1, 27-31). Angiostatin was shown to represent an internal fragment of plasminogen containing the first four kringle structures. We now report on the inhibitory effects of individual or combined kringle structures of angiostatin on capillary endothelial cell proliferation. Recombinant kringle 1 and kringle 3 exhibit potent inhibitory activity with half-maximal concentrations (ED 50 ) of 320 nM and 460 nM, respectively. Also, recombinant kringle 2 displays a significant inhibition, although decreased compared with both kringle 1 and kringle 3. In contrast, kringle 4 is an ineffective inhibitor of basic fibroblast growth factor-stimulated endothelial cell proliferation. Among the tandem kringle arrays, the recombinant kringle 2-3 fragment exerts inhibitory activity similar to kringle 2 alone. However, relative to kringle 2-3, a marked enhancement in inhibition is observed when individual kringle 2 and kringle 3 are added together to endothelial cells. This implies that it is necessary to open the cystine bridge between kringle 2 and kringle 3 to obtain the maximal inhibitory effect of kringle 2-3. An increased (<2-fold) inhibitory activity is observed for the kringle 1-3 fragment (ED 50 ؍ 70 nM) compared with kringle 1-4 (ED 50 ؍ 135 nM). These data indicate that the anti-proliferative activity of angiostatin on endothelial cells is shared by kringle 1, kringle 2, and kringle 3, but probably not by kringle 4 and that more potent inhibition results when kringle 4 is removed from angiostatin. Thus, in view of the variable lysine affinity of the homologous domains, it would appear that lysine binding capability does not correlate with the relative inhibitory effects of the kringle-containing constructs. However, as we also demonstrate, appropriate folding of kringle structures is essential for angiostatin to maintain its full anti-endothelial activity.
The plasminogen kringle 2 (K2HPg) and kringle 3 (K3HPg) modules occur in tandem within the polypeptide segment that affords the heavy chain of plasmin. The K2HPg and K3HPg are unique among the plasminogen kringle domains in that they also are linked to each other via the Cys169-Cys297 (Cys4 of K2HPg to Cys43 of K3HPg, kringle numbering convention) disulfide bridge, thus generating a K2HPg-K3HPg "supermodule". The kringle (2 + 3) sequence of human plasminogen (r-EE[K2HPgK3HPg]DS) was expressed in Escherichia coli, using an expression vector containing the phage T5 promoter/operator N250PSN250P29 and the codons for an N-terminal hexahistidine tag to ensure the isolation of the recombinant protein by affinity chromatography on Ni(2+)-nitrilotriacetic acid/agarose under denaturing and reducing conditions. Kringle (2 + 3) was refolded in the presence of glutathione redox buffer. By taking advantage of the lysine affinity of kringle 2, the protein was purified by affinity chromatography on lysine-Bio-Gel. Recombinant kringle (2 + 3) was identified by amino acid composition, N-terminal sequence and mass determination. The 1H NMR spectrum shows that the intact r-K2HPgK3HPg is properly folded. By reference to spectra of the individual kringles, r-K2HPg and r-K3HPg, resonances of the K2HPg and K3HPg components in the spectrum of the intact r-K2HPgK3HPg can be readily distinguished. The strictly conserved Leu46 residue (kringle residue number convention) yields delta-methyl signals that are characteristic for K2HPg and K3HPg, exhibiting chemical shifts of -0.87 and -0.94 ppm, respectively, which are distinct from those of K1HPg, K4HPg, and K5HPg, (-1.04 to -1.05 ppm). Thus, the high-field Leu46 signals from K2HPg and K3HPg are well resolved from those of other kringles and can be identified unambiguously in spectra of the K1HPgK2HPgK3HPg elastolytic fragment of plasminogen as well as in spectra of Glu-plasminogen. Overall, r-K2HPgK3HPg exhibits broader resonance line widths than does the K1HPg component, consistent with a lesser mobility of the K2HPgK3HPg segment within the K1HPgK2HPgK3HPg fragment, a reflection of the extra structural constraint imposed by the disulfide bridge linking K2HPg to K3HPg. The ligand 6-aminohexanoic acid (6-AHA), which is known to interact with r-K2HPg but not with r-K3HPg, selectively perturbs K2 aromatic signals in the intact r-K2HPgK3HPg spectrum while leaving K3 resonances largely unaffected. Association constant (K(a)) values for 6-AHA determined from 1H NMR ligand titration experiments yield K(a) approximately 2.2 +/- 0.3 mM(-1) for the intact r-K2HPgK3HPg, comparable to K(a) approximately 2.3 +/- 0.2 mM(-1) determined for the isolated r-K2HPg, which demonstrates that the interactions of 6-AHA with the K2HPg ligand-binding site are not significantly affected by the neighboring K3HPg domain within the intact r-K2HPgK3HPg supermodule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.