High-frequency mechanical strain seems to stimulate bone strength in animals. In this randomized controlled trial, hip BMD was measured in postmenopausal women after a 24-week whole body vibration (WBV) training program. Vibration training significantly increased BMD of the hip. These findings suggest that WBV training might be useful in the prevention of osteoporosis.Introduction: High-frequency mechanical strain has been shown to stimulate bone strength in different animal models. However, the effects of vibration exercise on the human skeleton have rarely been studied. Particularly in postmenopausal women-who are most at risk of developing osteoporosis-randomized controlled data on the safety and efficacy of vibration loading are lacking. The aim of this randomized controlled trial was to assess the musculoskeletal effects of high-frequency loading by means of whole body vibration (WBV) in postmenopausal women. Materials and Methods: Seventy volunteers (age, 58 -74 years) were randomly assigned to a whole body vibration training group (WBV, n ϭ 25), a resistance training group (RES, n ϭ 22), or a control group (CON, n ϭ 23). The WBV group and the RES group trained three times weekly for 24 weeks. The WBV group performed static and dynamic knee-extensor exercises on a vibration platform (35-40 Hz, 2.28 -5.09g), which mechanically loaded the bone and evoked reflexive muscle contractions. The RES group trained knee extensors by dynamic leg press and leg extension exercises, increasing from low (20 RM) to high (8 RM) resistance. The CON group did not participate in any training. Hip bone density was measured using DXA at baseline and after the 6-month intervention. Isometric and dynamic strength were measured by means of a motor-driven dynamometer. Data were analyzed by means of repeated measures ANOVA. Results: No vibration-related side effects were observed. Vibration training improved isometric and dynamic muscle strength (ϩ15% and ϩ 16%, respectively; p Ͻ 0.01) and also significantly increased BMD of the hip (ϩ0.93%, p Ͻ 0.05). No changes in hip BMD were observed in women participating in resistance training or age-matched controls (Ϫ0.60% and Ϫ0.62%, respectively; not significant). Serum markers of bone turnover did not change in any of the groups. Conclusion: These findings suggest that WBV training may be a feasible and effective way to modify wellrecognized risk factors for falls and fractures in older women and support the need for further human studies.
WBV, and the reflexive muscle contraction it provokes, has the potential to induce strength gain in knee extensors of previously untrained females to the same extent as resistance training at moderate intensity. It was clearly shown that strength increases after WBV training are not attributable to a placebo effect.
Patients with low back pain have a less refined position sense than healthy individuals, possibly because of an altered paraspinal muscle spindle afference and central processing of this sensory input. Furthermore, muscle vibration can be an interesting expedient for improving proprioception and enhancing local muscle control.
WBV is a suitable training method and is as efficient as conventional RES training to improve knee-extension strength and speed of movement and counter-movement jump performance in older women. As previously shown in young women, it is suggested that the strength gain in older women is mainly due to the vibration stimulus and not only to the unloaded exercises performed on the WBV platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.