SummaryCompounds containing a,b-unsaturated carbonyl groups are increasingly implicated as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at the site of lesion formation in host-pathogen interactions. We used a robust measurement of photosynthetic efficiency to quantify the toxicity of a variety of lipid derivatives in Arabidopsis leaves. Small a,b-unsaturated carbonyl compounds (e.g. acrolein and methyl vinyl ketone) were highly active and proved to be potent stimulators of expression of the pathogenesis-related gene HEL (PR4). These small volatile electrophiles were far more active than larger alkenal homologs like 2(E)-hexenal, and activated HEL expression in a manner independent of salicylate, ethylene, and jasmonate production/perception. Electrophile treatment massively increased the levels of unesterified cyclopentenone jasmonates, which themselves are electrophiles. Patterns of gene expression in response to electrophile treatment and in response to avirulent bacteria were compared, which revealed strikingly similar transcript profiles. The results broaden the range of known biologic effects of reactive electrophile species to include the activation of a pathogenesis-related gene (HEL) and genes involved in metabolism. Electrophiles can act as mediators of both genetic and biochemical effects on core defense signal transduction.
Background: Reuterin produced from glycerol by Lactobacillus reuteri, a normal inhabitant of the human intestine, is a broad-spectrum antimicrobial agent. It has been postulated that reuterin could play a role in the probiotic effects of Lb. reuteri. Reuterin is active toward enteropathogens, yeasts, fungi, protozoa and viruses, but its effect on commensal intestinal bacteria is unknown. Moreover reuterin's mode of action has not yet been elucidated. Glutathione, a powerful antioxidant, which also plays a key role in detoxifying reactive aldehydes, protects certain bacteria from oxidative stress, and could also be implicated in resistance to reuterin.
3-hydroxypropionaldehyde (3-HPA) forms, together with HPA-hydrate and HPA-dimer, a dynamic, multi-component system (HPA system) used in food preservation, as a precursor for many modern chemicals such as acrolein, acrylic acid, and 1,3-propanediol (1,3-PDO), and for polymer production. 3-HPA can be obtained both through traditional chemistry and bacterial fermentation. To date, 3-HPA has been produced from petrochemical resources as an intermediate in 1,3-PDO production. In vivo, glycerol is converted in one enzymatic step into 3-HPA. The 3-HPA-producing Lactobacillus reuteri is used as a probiotic in the health care of humans and animals. The biotechnological production of 3-HPA from renewable resources is desirable both for use of 3-HPA in foods and for the production of bulk chemicals. The main challenge will be the efficient production and recovery of pure 3-HPA.
Physical damage and disease are known to lead to changes in the oxylipin signature of plants. We searched for oxylipins produced in response to both wounding and pathogenesis in Arabidopsis leaves. Linoleic acid 9- and 13-ketodienes (KODEs) were found to accumulate in wounded leaves as well as in leaves infected with the pathogen Pseudomonas syringae pv. tomato (Pst). Quantification of the compounds showed that they accumulated to higher levels during the hypersensitive response to Pst avrRpm1 than during infection with a Pst strain lacking an avirulence gene. KODEs are Michael addition acceptors, containing a chemically reactive alpha,beta-unsaturated carbonyl group. When infiltrated into leaves, KODEs were found to induce expression of the GST1 gene, but vital staining indicated that these compounds also damaged plant cells. Several molecules typical of lipid oxidation, including malonaldehyde, also contain the alpha,beta-unsaturated carbonyl reactivity feature, and, when delivered in a volatile form, powerfully induced the expression of GST1. The results draw attention to the potential physiological importance of naturally occurring Michael addition acceptors in plants. In particular, these compounds could act directly, or indirectly via cell damage, as powerful gene activators and might also contribute to host cell death.
The compound 3-hydroxypropionaldehyde (3-HPA), together with HPA hydrate and HPA dimer, in aqueous solution forms a system with interesting chemical properties. Therefore, 3-HPA has attracted attention by the chemical industry for use as a precursor in the production of plastics, acrylic acid, and 1,3-propanediol and by the food industry, in using 3-HPA-producing Lactobacillus reuteri as a probiotic. To produce 3-HPA in high yield from glycerol, L. reuteri was used as a biotransformation system. A convenient chromatographic purification method was developed, and purified 3-HPA was analyzed using electrospray ionization mass spectrometry and (13)C NMR. Quantitative (13)C NMR revealed a concentration-dependent distribution of the three compounds forming the HPA system. At concentrations above 1.4 M, the HPA dimer was predominant. However, at concentrations relevant for biological systems, HPA hydrate was the most abundant, followed by the aldehyde form. Our results indicate that the dimeric form with expected antibiotic properties should not be the active form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.