Organic and inorganic nutrients are important for crop productivity and soil health. Present study investigated the effects of organic and inorganic manures on maize and their residual impacts on soil physico-chemical characteristics. Sheep manure (SM), poultry manure (PM) and farmyard manure (FYM) were applied as organic nutrient source while urea, diammonium phosphate (DAP) and sulphate of potash (SOP) were used at different concentrations as inorganic nutrients source viz., T 1 : Unfertilized control; T 2 : NPK at 250-150-125 kg ha -1 ; were substantially improved by fertilizer application alongside organic manures whereas soil total organic C and total N, P, K contents increased when inorganic fertilizers were applied alone or in combined with organic manures. However, soil pH and soil bulk density decreased due to application of organic fertilizer and showed a negative correlation with grain yield. Further, a significant and positive correlation (R 2 = 0.52, 0.91 and 0.55) was observed among maize grain yield and available N, P and K contents, respectively in the soil. Conclusively, integration of inorganic fertilizers with organic manures can be used with optimum rates to improve crop productivity on sustainable basis. This study will be helpful in crafting sustainable nutrient management programs in future to enhance crop productivity with high efficiency and minimum nutrient loss.
Brassica species are very effective in remediation of heavy metal contaminated sites. Lead (Pb) as a toxic pollutant causes number of morphological and biochemical variations in the plants. Synthetic chelator such as ethylenediaminetetraacetic acid (EDTA) improves the capability of plants to uptake heavy metals from polluted soil. In this regard, the role of EDTA in phytoextraction of lead, the seedlings of Brassica napus L. were grown hydroponically. Lead levels (50 and 100 μM) were supplied alone or together with 2.5 mM EDTA in the nutrient culture. After 7 weeks of stress, plants indicated that toxicity of Pb caused negative effects on plants and significantly reduced growth, biomass, chlorophyll content, gas exchange characteristics, and antioxidant enzymes activities such as superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT). Exposure to Pb induced the malondialdehyde (MDA), and hydrogen peroxide (H2O2) generation in both shoots and roots. The addition of EDTA alone or in combination with Pb significantly improved the plant growth, biomass, gas exchange characteristics, chlorophyll content, and antioxidant enzymes activities. EDTA also caused substantial improvement in Pb accumulation in Brassica plants. It can be deduced that application of EDTA significantly lessened the adverse effects of lead toxicity. Additionally, B. napus L. exhibited greater degree of tolerance against Pb toxicity and it also accumulated significant concentration of Pb from media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.