This study proposes general and specific modeling and simulation for Lorentz LA30-12S photovoltaic panel. This panel has monocrystalline cell technology. The panel power parameters are examined under observing different panel temperatures. It is created a special function for this system by Matlab/Simulink programmer. Also, the different solar radiation values are taken into account. The model for the proposed range of irradiance and temperature as model inputs, with the corresponding values of voltages, currents, and power as outputs is presented. Simulation results are compared by doing power calculations. The simulation results show that a photovoltaic panel output power reduces as module temperature increases. This situation is showed with Matlab/Simulink graphics. Ill. 13, bibl. 24, tabl. 1 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.109.3.166
Recent developments in power electronics have increased the usage of nonlinear loads in energy systems.With increases in the usage of semiconductor-sourced nonlinear loads, the adverse effects of harmonics-sensitive loads (e.g., protection control circuits and circuit breakers) have also increased. Generally, the negative effects of harmonics in power systems include the following: increased power losses; motor, generator, and transformer overheating; faulty operation of measurement and protection systems; lifetime shortening of electrical components; and parallel and series resonance problems. Therefore, harmonics has become a serious problem in current power electronics systems. However, harmonics can be reduced, particularly through drainage using filters. In this study, some power losses were detected in different facilities in the city of Van, Turkey, on the basis of the variable measurements (e.g., instantaneous electrical values, harmonics, flow, and voltage waveforms) obtained using ZERA MT 310 power analyzers. The harmonics causing these power losses were examined. Some simulation results for active filters were evaluated, and the overall effects of the harmonics are discussed. Shunt active power filter (SAPF) simulation was conducted using Simplorer 6.0, which is known to produce successful results in power electronics simulation applications. SAPF simulation requires the use of measurement points. This utilization of SAPF simulation has demonstrated that voltage drop and power loss in power distribution systems can be reduced. However, it was found that owing to their structure, semiconductor components produce harmonics and consume power.
In this study, High Voltage Transmission Line fault location accuracy of distance relays running impedance algorithm are compared with Travelling Wave (TW) method. Line faults in 154 kV Tatvan -Muş and 154 kV Patnos-Erciş lines in Turkish Electrical Transmission System are analyzed. Real faults in both lines are simulated in MATLAB-SIMULINK. Tower configuration and conductor properties of the lines and the source impedances are included in the simulation to comply with real system. Simulations show that both single-end and double-end Wavelet Transform (WT) based TW methods have better accuracy then the distance relays computing fault location by impedance methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.