Increased food consumption rich in fat and carbohydrate and sedentary lifestyle have seriously increased the rates of obesity and obesity-associated diseases in developed countries. Female mice with diet-induced obesity exhibit infertility and thus can serve as a model for human polycystic ovary syndrome. The aim of the present study was to examine how ovary is affected by diet-induced obesity. The effects of high-fat diet (HFD) on ovary morphology in mice fed with HFD were investigated using unbiased stereological methods. The ovary of mice fed with HFD (n=8, C1090-60, Altromine) for 9 weeks, were compared with that of mice fed with standard chow diet (n=8, C1090-10, Altromine). Stereological parameters were obtained in diestrus cycle. The samples were processed through routine and standard paraffin embedding and were serially sectioned in 5-µm thickness then, every 10th section was saved, stained with Crossman's triple stain for counting and measuring. In all sampled sections mean follicle numbers, diameters, total ovarian volume cortex to medulla ratio (Vv), ovum to cell ratio in secondary follicle were examined in all sampled sections. The present results showed that weight of ovarian and amount of intraperitoneal adipose tissue and the body weight markedly increased in obese mice when compared with control groups. Moreover, follicle numbers (except primordial follicles) and diameters were significantly increased in obese mice. Cortex to medulla ratio (Vv) and ovum to cell ratio in secondary follicle were also considerably different between experimental and the control groups. The present findings indicate that obesity adversely affects overall ovarian morphology.
Capsaicin is the pungent ingredient in red peppers. Due to the effects on the sensory nerve fibers, capsaicin has been used to treat pain and inflammation associated with a variety of diseases including rheumatoid arthritis and diabetic neuropathy, obesity, and cardiovascular and gastrointestinal conditions. Despite the extensive publications on different systems, the studies of the effects on the ovary are very limited. The present study was conducted to examine the possible proliferative and/or apoptotic effects of various doses of capsaicin on primarily derived granulosa cells. In accordance with this purpose, ovarian granulosa cells were exposed to different doses of capsaicin for 24 and 48 h. The proliferative effects of capsaicin were examined by immunocytochemistry, immunofluorescence, and western blot using an antibody against proliferating cell nuclear antigen (PCNA) and cell viability assay (MTT). The effects on apoptosis were determined by immunocytochemistry and immunofluorescence using antibodies against cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). We showed that the number of apoptotic cells increased in a capsaicin dose and time-dependent manners. We found that a low dose of CAP in 24 h administration was more effective on granulosa cell proliferation. Our results suggest that low-dose and short-term administration of CAP may have a positive effect on ovarian folliculogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.