In this work, we report the design of an optical fiber distributed sensing network for the 2-dimensional (2D) in situ thermal mapping of advanced methods for radiofrequency thermal ablation. The sensing system is based on six high-scattering MgO-doped optical fibers, interleaved by a scattering-level spatial multiplexing approach that allows simultaneous detection of each fiber location, in a 40 × 20 mm grid (7.8 mm2 pixel size). Radiofrequency ablation (RFA) was performed on bovine phantom, using a pristine approach and methods mediated by agarose and gold nanoparticles in order to enhance the ablation properties. The 2D sensors allow the detection of spatiotemporal patterns, evaluating the heating properties and investigating the repeatability. We observe that agarose-based ablation yields the widest ablated area in the best-case scenario, while gold nanoparticles-mediated ablation provides the best trade-off between the ablated area (53.0–65.1 mm2, 61.5 mm2 mean value) and repeatability.
Radiofrequency ablation (RFA) is a minimally invasive form of thermotherapy with great potential in cancer care, having the capability of selectively ablating tumoral masses with a surface area of several cm2. When performing RFA in the proximity of a blood vessel, the heating profile changes due to heat dissipation, perfusion, and impedance changes. In this work, we provide an experimental framework for the real-time evaluation of 2D thermal maps in RFA neighboring a blood vessel; the experimental setup is based on simultaneous scanning of multiple fibers in a distributed sensing network, achieving a spatial resolution of 2.5 × 4 mm2 in situ. We also demonstrate an increase of ablating potential when injecting an agarose gel in the tissue. Experimental results show that the heat-sink effect contributes to a reduction of the ablated region around 30–60% on average; however, the use of agarose significantly mitigates this effect, enlarging the ablated area by a significant amount, and ablating an even larger surface (+15%) in the absence of blood vessels.
In robotic rehabilitation the interaction is usually implemented by means of robots based on multi-Degree of Freedom (DOF) open kinematic chains. Despite their inherent flexibility these machines are expensive, complex and require routine maintenance and IT support. In contrast, mechanisms based on closed kinematic chains and especially 1-DOF four- and six bar linkages are simple, yet capable of generating paths with complex kinematic characteristics. These mechanisms are preferable when simplicity and cost are the major criteria, for example in the case of community-based rehabilitation in developing countries. On the other hand, rehabilitation using 1-DOF limits flexibility and potentially impairs the exercise effectiveness, since the patient does not have access to a variety of kinematic challenges. Nevertheless, by careful ergonomic design and by considering varying time constraints, link rotation ranges and varying link lengths this limitation can be overcome. This work aims to demonstrate the potential of 1-DOF four-bar linkages to provide flexibility in therapy by considering a Hoeken’s straight line four-bar linkage. After the mechanism is dimensioned, a previously developed method is employed for establishing a final prototype design which accounts for significant neurophysiological models such as Minimum Jerk Model, Fitts’s Law and Just Noticeable Differences. Given the mechanism characteristics, its potential for generation of exercises that vary with respect to temporal and spatial characteristics is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.