The paper presents the human thermal comfort inside a car cabin using three-dimensional numerical analysis and state of the art comfort models. Vehicular thermal comfort is a must concern factor in modern car manufacturing industries. Numerical simulations have been performed to accurately predict the temperature inside the car cabin and velocity of airflow. The numerical results are then compared using Fanger’s model, the equivalent temperature model and the modified Fanger’s model. A link has been developed using a general thermal comfort index for the considered human thermal comfort models. The general thermal comfort index takes into consideration all the investigated parameters that affect the vehicular thermal comfort thereby evaluating the whole car environment. The thermally comfortable conditions for the driver and passengers in a vehicular cabin are also addressed based on some of the thermal comfort indexes available in literature. In addition, the solar load has also been added using a surface radiation model to consider the environmental heat load effect on cabin thermal comfort.
Abstract:The realization of a comfortable thermal environment with low energy consumption and improved ventilation in a car has become the aim of manufacturers in recent decades. Novel ventilation concepts with more flexible cabin usage and layouts are appealing owing to their potential for improving passenger comfort and driving power. In this study, three variant ventilation concepts are investigated and their performance is compared with respect to energy efficiency and human comfort of the driver and passenger in front and a child in the rear compartment. FLUENT 16.0, a commercial three-dimensional (3D) software, are used for the simulation. A surface-to-surface radiation model is applied under transient conditions for a car parked in summer conditions with its engine in the running condition. The results for the standard Fanger's model and modified Fanger's model are analyzed, discussed, and compared for the driver, passenger, and child. The modified Fanger's model determines the thermal sensation on the basis of mean arterial pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.