Let X be an infinite complex Banach space and consider two bounded linear operators A,B ? L(X). Let LA ? L(L(X)) and RB ? L(L(X)) be the left and the right multiplication operators, respectively. The generalized derivation ?A,B ? L(L(X)) is defined by ?A,B(X) = (LA-RB)(X) = AX-XB. In this paper we give some sufficient conditions for ?A,B to satisfy SVEP, and we prove that ?A,B-?I has finite ascent for all complex ?, for general choices of the operators A and B, without using the range kernel orthogonality. This information is applied to prove some necessary and sufficient conditions for the range of ?A,B-?I to be closed. In [18, Propostion 2.9] Duggal et al. proved that, if asc(?A,B-?)? 1, for all complex ?, and if either (i) A* and B have SVEP or (ii)?* A,B has SVEP, then ?A,B-? has closed range for all complex ? if and only if A and B are algebraic operators, we prove using the spectral theory that, if asc(?A,B-?) ? 1, for all complex ?, then ?A,B-? has closed range, for all complex ? if and only if A and B are algebraic operators, without the additional conditions (i) or (ii).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.