Obesity and associated metabolic complications, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), are in constant increase around the world. While most obese patients show several metabolic and biometric abnormalities and comorbidities, a subgroup of patients representing 3% to 57% of obese adults, depending on the diagnosis criteria, remains metabolically healthy. Among many other factors, the gut microbiota is now identified as a determining factor in the pathogenesis of metabolically unhealthy obese (MUHO) individuals and in obesity-related diseases such as endotoxemia, intestinal and systemic inflammation, as well as insulin resistance. Interestingly, recent studies suggest that an optimal healthy-like gut microbiota structure may contribute to the metabolically healthy obese (MHO) phenotype. Here, we describe how dietary medium chain triglycerides (MCT), previously found to promote lipid catabolism, energy expenditure and weight loss, can ameliorate metabolic health via their capacity to improve both intestinal ecosystem and permeability. MCT-enriched diets could therefore be used to manage metabolic diseases through modification of gut microbiota.
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points to medium chain fatty acids (MCFA), more efficiently oxidized than LCFA, as a promising dietary alternative against NAFLD. However, reports on the hepatic effects of MCFA are sometimes conflicting. In this study we exposed HepG2 cells, a human hepatocellular model, to 0.25 mM of hexanoic (C6), or octanoic (C8), and decanoic (C10) acids separately or in a C8 + C10 equimolar mix reflecting commercially available MCFA-rich oils. We found that C6, a poorly studied MCFA, as well as C8 and C10 did not provoke the deleterious lipid anabolism runaway typically induced by LCFA palmitate. MCFA tended, instead, to promote a balanced metabolic profile and were generally non-cytotoxic. Accordingly, mitochondrial integrity was mostly preserved following MCFA treatment. However, treatments with C8 induced a mitochondrial membrane potential decrease, suggesting prolonged exposure to this lipid could be problematic. Finally, MCFA treatments maintained optimal insulin sensitivity and even fostered basal and insulin-dependent phosphorylation of the Akt-mTOR pathway. Overall, MCFA could constitute an effective nutritional tool to manage liver steatosis and hepatic insulin resistance.
Berardinelli-Seip congenital lipodystrophy (BSCL) is an autosomal recessive disorder. The more severe form, designated BSCL2, arises due to mutations in the BSCL2 gene. Patients with BSCL2, as well as Bscl2 mice, have a near total absence of body fat, an organomegaly, and develop metabolic disorders including insulin resistance and hepatic steatosis. The function of the Seipin (BSCL2) protein remains poorly understood. Several lines of evidence have indicated that Seipin may have distinct functions in adipose versus non-adipose cells. Here we present evidence that BSCL2/Bscl2 plays a role in lipid droplet (LD) biogenesis and homeostasis in primary and cultured hepatocytes. Our results show that decreasing BSCL2/Bscl2 expression in hepatocytes increases the number and size of LD, as well as the expression of genes implicated in their formation and stability. We also show that knocking down SCD1 expression reverses the phenotype associated with Seipin deficiency. Interestingly, BSCL2 knockdown induces SCD1 expression and activity, potentially leading to increased basal phosphorylation of proteins involved in the insulin signaling cascade, as well as further increasing fatty acid uptake and de novo lipogenesis. In conclusion, our results suggest that a hepatic BSCL2/Bscl2 deficiency induces the increase and expansion of LD, potentially via increased SCD1 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.