Tea contains about 230 chemical bioactive compounds, of which polyphenols represent the most considerable fraction (30% of total dry weight). These compounds have relevant nutritional and pharmacological effects on human health, exerting antioxidant activities against oxidative stress-induced damage. The industrial processes applied in tea production can lead to qualitative and quantitative changes in the phenolic content and composition and in antioxidant properties, thus influencing their potential biological activities. Meanwhile, the procedure for tea preparation may influence the quantity of the extracted phenolic compounds. In this study, the effects of different infusion parameters, such as the water type used for infusion (tap water, distilled water, and natural mineral water), time (3, 5, and 10 min), temperature (T = 80 °C and 100 °C), and pH (ranged between 3 and 9) were considered. The optimal infusion variables resulting from the study were obtained by extracting phenolic compounds at T = 100 °C for 10 min, both for green (916.12–1169.81 mg GAE/g) and black (932.03–1126.62 mg GAE/g) bagged tea samples, respectively.
A multidisciplinary protocol is proposed to monitor the preservation of fresh pumpkin samples (FP) using three commercial polymeric films: A made of biodegradable cellophane from regenerated cellulose pulp; B from corn starch, cassava and eucalyptus, C made of polylactic acid from corn starch, and a polyethylene film used as reference (REF). Chemical, mechanical and microbiological analyses were applied on packaging and fresh and packaged samples at different times. After an 11-day period, NMR spectroscopy results showed a sucrose increase and a malic acid decrease in all the biofilms with respect to FP; fructose, glucose, galactose levels remained quite constant in biofilms B and C; the most abundant amino acids remained quite constant in biofilm A and decreased significantly in biofilm B. From microbiological analyses total microbial count was below the threshold value up to 7 days for samples in all the films, and 11 days for biofilm C. The lactic acid bacteria, and yeasts and molds counts were below the acceptability limit during the 11 days for all packages. In the case of biofilm C, the most promising packaging for microbiological point of view, aroma analysis was also carried out. In this paper, you can find all the analysis performed and all the values found.
Coffee is one of the most widely consumed beverages worldwide, mainly due to its organoleptic, and psychoactive properties. Coffee brewing techniques involve the use of different extraction/infusion conditions (i.e., time, temperature, pressure, water/powder ratio, etc.), which can influence the quality of the final product. The study aimed to analyze the effect of four brewing coffee techniques (industrial espresso machine, Moka machine, pod machine, and capsule machine), which are the most used coffee brewing methods in Italy, on the quality and safety of the coffee brews, taking into account the profile of biogenic amines (BAs), total polyphenol content (TPC), total flavonoid content (TFC) and anti-radical activity (DPPH and ABTS assay). Eight coffee powders and brewed beverages from two different brands belonging to the 100% Arabica variety (country of origin Brazil) were analysed. The brewing techniques all resulted in a reduction of both BA content (27–30%), TPC (55–60%), TFC (50–55%), and anti-radical assays (45–50%) in coffee beverages compared to ground coffee samples. The study also showed that Moka is the method that yields the highest TPC (2.71–3.52 mg GAE/g coffee powder) and TFC (8.50–8.60 mg RUT/g coffee powder) content and highest anti-radical capacity in coffee beverages. The multivariate statistical analysis revealed a difference between coffee powder and infusions and coffee infusions obtained by different extraction techniques. Moreover, an analysis of the environmental impacts related to the different coffee preparation methods examined was conducted. This was performed by applying the Life Cycle Assessment (LCA) methodology through SimaPro v.9.2.2. software.
Biogenic amines (BAs) are natural contaminants of wine that originate from decarboxylase microorganisms involved in fermentation processes. The primary relevance of biogenic amines in food could have both toxic effects on consumers’ health (i.e., allergic reactions, nausea, tremors, etc.), if present at high concentrations, and concurrently it can be considered as a remarkable indicator of quality and/or freshness. Therefore, the presence of nine biogenic amines [Tryptamine (TRP), ß-phenylethylamine (ß-PEA), putrescine (PUT), cadaverine (CAD), histamine (HIS), serotonin (SER), tyramine (TYR), spermidine (SPD), and spermine (SPM)] was investigated in red and white wine samples, which differed in the winemaking processes. The qualitative-quantitative determination of BAs was carried out by chromatographic methods (HPLC-UV/Vis and LC-ESI-MS). The analysis showed that both winemaking processes had all the nine BAs considered in the study at different amounts. Data showed that red wines had a higher concentration of PUT (10.52 mg L−1), TYR (7.57 mg L−1), and HIS (6.5 mg L−1), the BAs most involved in food poisoning, compared to white wines, probably related to the different type of fermentation (alcoholic and malolactic).
Summary The green solvents and eco‐extraction methods are gaining increasing interest in chemical analysis for bioactive compounds in food matrices. Deep Eutectic Solvents (DES) developed as a greener and more sustainable alternative to organic solvents, owing to their non‐toxic, highly stable, and biodegradation‐friendly nature. DES application for polyphenols and antioxidant compounds extraction in dark chocolate samples has been evaluated in an integrated study for sustainability assessment, based on multivariate analysis and Life Cycle Assessment (LCA) methodology. A green extraction method based on DES was proposed testing different HBA:HBD pairs (ChCl:Fru, ChCl:Teg, Bet:Fru, and Bet:Teg). DES Bet:Fru resulted in the highest extraction yield in terms of both total polyphenols (0.34–3.37 g GAE/100 g) and flavonoids (1.13–8.32 g RUT/100 g), P < 0.05. Furthermore, the environmental performances of green and conventional solvents (MeOH:H2O, H2O, and MeOH) were evaluated by applying a comparative LCA (c‐LCA). The c‐LCA study highlighted that conventional extraction for polyphenols in dark chocolate was 60% more impactful than DES. DES pairs analysed quantitatively lowest impacted than conventional methods, considering the macro‐categories Human Health (9.99 × 10–8 ÷ 1.54 × 10–7 DALYs), Ecosystem (2.29 × 10–10 ÷ 3.57 × 10–10 species.yr), and Resources (6.57 × 10–3 ÷ 8.96 × 10–3 USD2013).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.