Healthcare is considered as one of the most promising application areas for artificial intelligence and analytics (AIA) just after the emergence of the latter. AI combined to analytics technologies is increasingly changing medical practice and healthcare in an impressive way using efficient algorithms from various branches of information technology (IT). Indeed, numerous works are published every year in several universities and innovation centers worldwide, but there are concerns about progress in their effective success. There are growing examples of AIA being implemented in healthcare with promising results. This review paper summarizes the past 5 years of healthcare applications of AIA, across different techniques and medical specialties, and discusses the current issues and challenges, related to this revolutionary technology. A total of 24,782 articles were identified. The aim of this paper is to provide the research community with the necessary background to push this field even further and propose a framework that will help integrate diverse AIA technologies around patient needs in various healthcare contexts, especially for chronic care patients, who present the most complex comorbidities and care needs.
In smart homes, a few millions of data are sent by different sensors and RFID per day. It thus constitutes a Big Data warehouse with all the problems that come from and in our work, we are interested in the problem of managing huge data in streaming. In this paper, we propose to use very fast decision tree(VFDT) for activity recognition. We formulate Activity Recognition as a classification problem where classes correspond to activities. The performance of the VFDT and other classifiers is compared.
Background: Pneumonia is difficult to differentiate from other pulmonary diseases because it shares many symptoms with these diseases. Diagnosing pneumonia in clinical practice would benefit from having access to a codified representation of clinical knowledge. An ontology represents a well-established paradigm for such codification. Objectives: The goal of this research is to create Pneumonia Diagnosis Ontology (PNADO) that brings together the medical knowledge dispersed among multiple medical knowledge sources. Material and Methods: We used several clinical practice guidelines (CPGs) describing the pneumonia diagnostic process as a starting point in developing PNADO. Preliminary version of PNADO was subsequently expanded to cover a broader range of the concepts by reusing ontologies from Open Biological and Biomedical Ontology (OBO) Foundry and BioPortal. PNADO was evaluated by examining relevant concepts from the pneumonia-specific systematic reviews, using patient data from the MIMIC-III clinical dataset, and by clinical domain experts. Results: PNADO is a comprehensive ontology and has a rich set of classes and properties that cover different types of pneumonia, pathogens, symptoms, clinical signs, laboratory tests and imaging, clinical findings, complications, and diagnoses. Conclusion: PNADO unifies pneumonia diagnostic concepts from multiple knowledge sources. It is available in the BioPortal repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.