In relation to the high prevalence of occult HBV infection, particularly in HIV/HCV-coinfected individuals, it is necessary to clarify the clinical impact of this cryptic infection by monitoring HBV-DNA in plasma using the correct approach. Similarly to HBsAg-positive individuals of the Mediterranean area, HBV genotype D is invariably detected in this cohort of HIV-infected patients with occult HBV infection.
To characterize occult HBV infection (OHB) in different compartments of HIV+ individuals. This retrospective study involved 38 consecutive HIV+ patients; 24 HBsAg negative (HBV-) and 14 HBsAg positive (HBV+). OHB was assessed in serum samples, liver tissue (LT) and peripheral blood mononuclear cells (PBMC) by genomic amplification of the partial S, X and precore/core regions. HBV genomic analysis was inferred by direct sequencing of PCR products. The intracellular HBV-DNA was measured by a quantitative real-time PCR. HBV+ patients were used as a control for HBV replication and genomic profile. In HBV- patients, HBV-DNA was undetectable in all serum samples, while it was found positive in 7/24 (29%) LT in which genotype D prevailed (57%). HBV-DNA was found in 6/7 (86%) PBMC of occult-positive and none of occult-negative LT. Significantly lower HBV-DNA load was present in both compartments in OHB+ with respect to the HBV+ group (LT: P = 0.002; PBMC: P = 0.026). In the occult-positive cases, HBV replication was significantly higher in LT than in PBMC (P = 0.028). A hyper-mutated S gene in PBMC and a nucleotide mutation at position C695 in LT that produces a translational stop codon at amino acid 181 of the HBs gene characterized OHB. In this group of HIV+ persons, OHB is frequent and exhibits lower replication levels than chronic HBV in the different compartments examined. HBV-DNA detection in PBMC may offer a useful tool to identify OHB in serum-negative cases. The novel HBs gene stop codon found in LT could be responsible for reduced production leading to undetectability of HBsAg.
Multiple direct-acting antiviral (DAA)-based regimens are currently approved that provide one or more interferon-free treatment options for hepatitis C virus (HCV) genotypes (G) 1-6. The choice of a DAA regimen, duration of therapy, and use of ribavirin depends on multiple viral and host factors, including HCV genotype, the detection of resistance-associated amino acid (aa) substitutions (RASs), prior treatment experience, and presence of cirrhosis. In regard to viral factors that may guide the treatment choice, the most important is the infecting genotype because a number of DAAs are genotype-designed. The potency and the genetic barrier may also impact the choice of treatment. One important and debated possible virologic factor that may negatively influence the response to DAAs is the presence of baseline RASs. Baseline resistance testing is currently not routinely considered or recommended for initiating HCV treatment, due to the overall high response rates (sustained virological response >90%) obtained. Exceptions are patients infected by HCV G1a when initiating treatment with simeprevir and elbasvir/grazoprevir or in those with cirrhosis prior to daclatasvir/sofosbuvir treatment because of natural polymorphisms demonstrated in sites of resistance. On the basis of these observations, first-line strategies should be optimized to overcome treatment failure due to HCV resistance.
These findings of different HCV genetic diversification in different compartments suggest that CSF is an independent site of viral replication and persistence.
Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.