The oral-facial-digital type I (OFD1) syndrome (OMIM 311200) is a human developmental disorder; affected individuals have craniofacial and digital abnormalities and, in 15% of cases, polycystic kidney. The disease is inherited as an X-linked dominant male-lethal trait. Using a Cre-loxP system, we generated knockout animals lacking Ofd1 and reproduced the main features of the disease, albeit with increased severity, possibly owing to differences of X inactivation patterns between human and mouse. We found failure of left-right axis specification in mutant male embryos, and ultrastructural analysis showed a lack of cilia in the embryonic node. Formation of cilia was defective in cystic kidneys from heterozygous females, implicating ciliogenesis as a mechanism underlying cyst development. In addition, we found impaired patterning of the neural tube and altered expression of the 5' Hoxa and Hoxd genes in the limb buds of mice lacking Ofd1, suggesting that Ofd1 could have a role beyond primary cilium organization and assembly.
Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.
Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.
Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia characterized by cognitive and memory impairment. One of the mechanism involved in the pathogenesis of AD, is the oxidative stress being involved in AD‘s development and progression. In addition, several studies proved that chronic viral infections, mainly induced by Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), Human herpesvirus 2 (HHV-2), and Hepatitis C virus (HCV) could be responsible for AD’s neuropathology. Despite the large amount of data regarding the pathogenesis of Alzheimer’s disease (AD), a very limited number of therapeutic drugs and/or pharmacological approaches, have been developed so far. It is important to underline that, in recent years, natural compounds, due their antioxidants and anti-inflammatory properties have been largely studied and identified as promising agents for the prevention and treatment of neurodegenerative diseases, including AD. The ester of epigallocatechin and gallic acid, (−)-Epigallocatechin-3-Gallate (EGCG), is the main and most significantly bioactive polyphenol found in solid green tea extract. Several studies showed that this compound has important anti-inflammatory and antiatherogenic properties as well as protective effects against neuronal damage and brain edema. To date, many studies regarding the potential effects of EGCG in AD’s treatment have been reported in literature. The purpose of this review is to summarize the in vitro and in vivo pre-clinical studies on the use of EGCG in the prevention and the treatment of AD as well as to offer new insights for translational perspectives into clinical practice.
The metastatic process is the most serious cause of cancer death. Norepinephrine, secreted in chronic stress conditions, stimulates the motility of breast and colon cells through β-adrenergic receptor. On these bases, we examined its possible role in metastasis formation and development in vitro and in vivo. Treatments with norepinephrine (β2-adrenoreceptor agonist) in mice xenografted with human DU145 prostate cancer cells increased the metastatic potential of these cells. Specifically, we showed that treatment of mice with norepinephrine induced a significant increase of the migratory activity of cancer cells in a concentration-dependent manner and that this process was blocked by propanolol (β-adrenergic antagonist). Mice treated with norepinephrine, displayed an increased number of metastatic foci of DU145 cells in inguinal lymph nodes and also showed an increased expression of MMP2 and MMP9 in tumor samples compared to controls. Moreover, we demonstrated that propanolol induced in norepinephrine treated DU145 cells a E-cadherin finger-like membrane protrusions driven by vimentin remodeling. Altogether these data suggest that β2-AR plays an important role in prostate cancer metastasis formation and that the treatment with antagonist propanolol, could represents an interesting tool to control this process in cells overexpressing β2AR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.