Quantum heat engines are subjected to quantum fluctuations related to their discrete energy spectra. Such fluctuations question the reliable operation of thermal machines in the quantum regime. Here, we realize an endoreversible quantum Otto cycle in the large quasi-spin states of Cesium impurities immersed in an ultracold Rubidium bath. Endoreversible machines are internally reversible and irreversible losses only occur via thermal contact. We employ quantum control to regulate the direction of heat transfer that occurs via inelastic spin-exchange collisions. We further use full-counting statistics of individual atoms to monitor quantized heat exchange between engine and bath at the level of single quanta, and additionally evaluate average and variance of the power output. We optimize the performance as well as the stability of the quantum heat engine, achieving high efficiency, large power output and small power output fluctuations.
We report Ramsey spectroscopy on the clock states of individual Cs impurities immersed in an ultracold Rb bath. We record both the interaction-driven phase evolution and the decay of fringe contrast of the Ramsey interference signal to obtain information about bath density or temperature nondestructively. The Ramsey fringe is modified by a differential shift of the collisional energy when the two Cs states superposed interact with the Rb bath. This differential shift is directly affected by the mean gas density and the details of the Rb-Cs interspecies scattering length, affecting the phase evolution and the contrast of the Ramsey signal. Additionally, we enhance the temperature dependence of the phase shift preparing the system close to a low-magnetic-field Feshbach resonance where the s-wave scattering length is significantly affected by the collisional (kinetic) energy. Analyzing coherent phase evolution and decay of the Ramsey fringe contrast, we probe the Rb cloud's density and temperature. Our results point at using individual impurity atoms as nondestructive quantum probes in complex quantum systems.
We report Ramsey spectroscopy on the clock states of individual Cs impurities immersed in an ultracold Rb bath. We record both the interaction-driven phase evolution and the decay of fringe contrast of the Ramsey interference signal to obtain information about bath density or temperature nondestructively. The Ramsey fringe is modified by a differential shift of the collisional energy when the two Cs states superposed interact with the Rb bath. This differential shift is directly affected by the mean gas density and the details of the Rb-Cs interspecies scattering length, affecting the phase evolution and the contrast of the Ramsey signal. Additionally, we enhance the temperature dependence of the phase shift preparing the system close to a low-magnetic-field Feshbach resonance where the s-wave scattering length is significantly affected by the collisional (kinetic) energy. Analyzing coherent phase evolution and decay of the Ramsey fringe contrast, we probe the Rb cloud's density and temperature. Our results point at using individual impurity atoms as nondestructive quantum probes in complex quantum systems.
Heat engines usually operate by exchanging heat with thermal baths at different (positive) temperatures. Nonthermal baths may, however, lead to a significant performance boost. We here experimentally analyze the power output of a single-atom quantum Otto engine realized in the quasi-spin states of individual Cesium atoms interacting with an atomic Rubidium bath. From measured time-resolved populations of the quasi-spin state, we determine the dynamics during the cycle of both the effective spin temperature and of the quantum fluctuations of the engine, which we quantify with the help of the Shannon entropy. We find that power is enhanced in the negative temperature regime, and that it reaches its maximum value at half the maximum entropy. Quantitatively, operating our engine at negative effective temperatures increases the power by up to 30% compared to operation at positive temperatures, including even the case of infinite temperature. At the same time, entering the negative temperature regime allows for reducing the entropy to values close to zero, offering highly stable operation at high power output. We furthermore numerically investigate the influence of the size of the Hilbert space on the performance of the quantum engine by varying the number of levels of the working medium. Our work thereby paves the way to fluctuation control in the operation of high-power and efficient single-atom quantum engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.