SummarySister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation in mitosis and meiosis [1]. Rec8-containing cohesin, bound to Smc3/Smc1α or Smc3/Smc1β, maintains bivalent cohesion in mammalian meiosis [2, 3, 4, 5, 6]. In females, meiotic DNA replication and recombination occur in fetal oocytes. After birth, oocytes arrest at the prolonged dictyate stage until recruited to grow into mature oocytes that divide at ovulation. How cohesion is maintained in arrested oocytes remains a pivotal question relevant to maternal age-related aneuploidy. Hypothetically, cohesin turnover regenerates cohesion in oocytes. Evidence for post-replicative cohesion establishment mechanism exists, in yeast and invertebrates [7, 8]. In mouse fetal oocytes, cohesin loading factor Nipbl/Scc2 localizes to chromosome axes during recombination [9, 10]. Alternatively, cohesion is maintained without turnover. Consistent with this, cohesion maintenance does not require Smc1β transcription, but unlike Rec8, Smc1β is not required for establishing bivalent cohesion [11, 12]. Rec8 maintains cohesion without turnover during weeks of oocyte growth [3]. Whether the same applies to months or decades of arrest is unknown. Here, we test whether Rec8 activated in arrested mouse oocytes builds cohesion revealed by TEV cleavage and live-cell imaging. Rec8 establishes cohesion when activated during DNA replication in fetal oocytes using tamoxifen-inducible Cre. In contrast, no new cohesion is detected when Rec8 is activated in arrested oocytes by tamoxifen despite cohesin synthesis. We conclude that cohesion established in fetal oocytes is maintained for months without detectable turnover in dictyate-arrested oocytes. This implies that women’s fertility depends on the longevity of cohesin proteins that established cohesion in utero.
Cytochrome P4502C19 (CYP2C19) is an important drug-metabolizing enzyme involved in the biotransformation of, for example, proton pump inhibitors and antidepressants. Several in vivo studies have shown that the CYP2C19 activity is inhibited by oral contraceptives, which can cause important drug interactions. The underlying molecular mechanism has been suggested to be competitive inhibition. However, the results presented here indicate that estradiol derivatives down-regulate CYP2C19 expression via estrogen receptor (ER) ␣, which interacts with the newly identified ER-binding half site [estrogen response element (ERE)] at the position Ϫ151/Ϫ147 in the CYP2C19 promoter. In gene reporter experiments in Huh-7 hepatoma cells, the activity of the luciferase construct carrying a 1.6-kb long CYP2C19 promoter fragment cotransfected with ER␣ was down-regulated upon treatment with 17-estradiol (EE) or 17␣-ethinylestradiol (ETE) at half-maximum concentrations of 10 Ϫ7 and 10 Ϫ8 M, respectively. Mutations introduced into the ERE half site Ϫ151/Ϫ147 significantly inhibited these ligand-dependent effects. Electrophoretic mobility shift assays and quantitative chromatin immunoprecipitation experiments revealed that estrogen receptor ␣ binds to this element. A significant suppression of CYP2C19 transcription by female sex steroids was confirmed by reverse transcription polymerase chain reaction after hormonal treatment of human hepatocytes. Inhibition experiments using a stable human embryonic kidney 293 CYP2C19 cell line revealed competitive inhibition at much higher concentrations of EE and ETE compared with those required for transcriptional inhibition. These results indicate that both EE and ETE inhibit CYP2C19 expression via an ER␣-dependent regulatory pathway, thus providing a new insight into the molecular mechanism behind the inhibitory effect of oral contraceptives on CYP2C19 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.