In the present work we investigated the toxic activities of two Bothrops snake venoms using in vivo and in vitro experimental protocols in mice and tested the protective effect of dexamethasone (DEXA) in different conditions, comparing it with the polyvalent antivenom. We also expanded the investigations on the antiophidic effect of the Eclipta prostrata (EP) crude extract. The administration of Bothrops jararaca and Bothrops jararacussu snake venoms induced muscle damage demonstrated in vivo by the elevation on plasma creatine kinase (CK) activity in mice and by the decrease in CK content in the extensor digitorum longus (EDL) muscle of these animals, and in vitro by the increase in the rate of CK release from the isolated EDL muscle. We also observed inflammatory response following perimuscular injection of B. jararacussu venom (1.0 mg/kg). Treatment with DEXA (1.0 mg/kg) preserved over 50% of the EDL muscle CK content in vivo when evaluated 24 and 72 h after the injection of B. jararacussu venom in mice, and likewise reduced about 20% of the edema induced by this venom. DEXA reduced in 50% the presence of inflammatory cells and their activity in EDL muscle. The EP extract (50 mg/kg) showed similar ability in preventing the induction of edema and the decrease in muscle CK content, and its association with DEXA showed additive effect. EP reduced over 77% of the plasma CK activity induced by the B. jararacussu venom. In the in vitro experiments, DEXA was not able to change the rate of CK release from EDL muscles exposed to 25 μg/mL of B. jararacussu venom, neither to prevent the fall in the amplitude of the indirectly evoked twitch at the phrenic-diaphragm preparation. EP extract showed otherwise a protective effect on these protocols, reaching up to 100% of protection when concentrations of 50.0 and 100.0 μg/mL were used. Altogether our results show that inflammation is at least in part responsible for the tissue damage induced by Bothrops snake venoms, once the steroidal anti-inflammatory drug dexamethasone was able to decrease the myotoxic effects of these venoms, by reducing the inflammatory response to the venom injection.
We investigated a synthetic coumestan named LQB93 and similar compounds abilities to antagonize activities of Bothrops jararacussu and Bothrops jararaca crude venoms in different protocols. The antimyotoxic activity was evaluated in vitro by the rate of release of creatine kinase (CK) from isolated mouse extensor digitorum longus muscle (EDL) induced by B. jararacussu (25 g/ml). For in vivo studies, B. jararacussu venom (1.0 mg/kg) was preincubated with LQB93 (0.1-30 mg/kg), during 30 min, for later injection in mouse tight and evaluation of the antimyotoxic and anti-edematogenic effects. LQB93 antagonized in vitro, the increase of CK release from the EDL muscle (IC(50)=0.0291 M). It also showed in vivo, antimyotoxic and anti-edematogenic effects that were dose-dependent with ID50 of 0.17 mg/kg and 0.14 mg/kg, respectively. The hemorrhage induced by B. jararaca (1.0 mg/kg) venom in the mouse skin, was abolished by LQB93 (10.0 mg/kg) preincubated with venom. Like wedelolactone, LQB93 protected rat isolated heart on a Langendorff preparation, from the cardiotoxicity of B. jararacussu venom. LQB93 inhibit the effects of Bothrops venoms like wedelolactone, a natural compound isolated from the plant Eclipta prostrata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.