VISTA is a potent negative regulator of T cell function that is expressed on hematopoietic cells and leukocytes. VISTA levels are heightened within the tumor microenvironment where its blockade can enhance anti-tumor immune responses in mice. In humans, blockade of the related PD-1 pathway has shown great potential in clinical immunotherapy trials. Here we report the structure of human VISTA and examine its function in lymphocyte negative regulation in cancer. VISTA is expressed predominantly within the hematopoietic compartment with highest expression within the myeloid lineage. VISTA-Ig suppressed proliferation of T cells but not B cells, blunted production of T cell cytokines and activation markers. Our results establish VISTA as a negative checkpoint regulator that suppresses T cell activation, induces Foxp3 expression and is highly expressed within the tumor microenvironment. By analogy to PD-1 and PD-L1 blockade, VISTA blockade may offer an immunotherapeutic strategy for human cancer.
Fine-tuning the immune response and maintaining tolerance to self antigens involves a complex network of co-stimulatory and co-inhibitory molecules. The recent FDA approval of ipilimumab, a monoclonal antibody blocking CTLA-4, demonstrates the impact of checkpoint regulators in disease. This is reinforced by ongoing clinical trials targeting not only CTLA-4, but also the PD-1 and B7-H4 pathways in various disease states. Recently two new B7 family inhibitory ligands, VISTA and B7-H6 were identified. Here we review recent understanding of B7 family members and their concerted regulation of the immune response to either self or foreign pathogens. We also discuss clinical developments in targeting these pathways in different disease settings, and introduce VISTA as a putative therapeutic target.
Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.
Immune checkpoint regulators are critical modulators of the immune system, allowing the initiation of a productive immune response and preventing the onset of autoimmunity. Co-inhibitory and co-stimulatory immune checkpoint receptors are required for full T-cell activation and effector functions such as the production of cytokines. In autoimmune rheumatic diseases, impaired tolerance leads to the development of diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Sjogren’s syndrome. Targeting the pathways of the inhibitory immune checkpoint molecules CD152 (cytotoxic T lymphocyte antigen-4) and CD279 (programmed death-1) in cancer shows robust anti-tumor responses and tumor regression. This observation suggests that, in autoimmune diseases, the converse strategy of engaging these molecules may alleviate inflammation owing to the success of abatacept (CD152-Ig) in rheumatoid arthritis patients. We review the preclinical and clinical developments in targeting immune checkpoint regulators in rheumatic disease.
Objective The targeting of negative checkpoint regulators as a means of augmenting antitumor immune responses is now an increasingly used and remarkably effective approach to the treatment of several human malignancies. The negative checkpoint regulator VISTA (V-domain Ig–containing suppressor of T cell activation; also known as programmed death 1 homolog or as death domain 1α) suppresses T cell responses and regulates myeloid activities. We proposed that exploitation of the VISTA pathway is a novel strategy for the treatment of human autoimmune disease, and therefore we undertook this study to determine the impact of VISTA genetic deficiency on lupus development in a lupus-prone mouse strain. Methods To evaluate whether genetic deficiency of VISTA affects the development of lupus, we interbred VISTA-deficient mice with Sle1.Sle3 mice, a well-characterized model of systemic lupus erythematosus (SLE). Results We demonstrated that the development of proteinuria and glomerulonephritis in these mice, designated Sle1.Sle3 VISTA−/− mice, was greatly accelerated and more severe compared to that in Sle1.Sle3 and C57BL/6 VISTA−/− mice. Analysis of cells from Sle1.Sle3 VISTA−/− mice showed enhanced activation of splenic CD4+ T cells and myeloid cell populations. No increase in titers of autoantibodies was seen in Sle1.Sle3 VISTA−/− mice. Most striking was a significant increase in proinflammatory cytokines, chemokines, and interferon (IFN)–regulated genes associated with SLE, such as IFNα, IFNγ, tumor necrosis factor, interleukin-10, and CXCL10, in Sle1.Sle3 VISTA−/− mice. Conclusion This study demonstrates for the first time that loss of VISTA in murine SLE exacerbates disease due to enhanced myeloid and T cell activation and cytokine production, including a robust IFNα signature, and supports a strategy of enhancement of the immunosuppressive activity of VISTA for the treatment of human lupus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.