Major depression is more prevalent among women than men, and progesterone might be involved in the mechanisms that generate these differences. Progesterone is clinically used for women in several reproductive events, but its antidepressant effect is unclear. Animal studies showed the interference of progesterone on depressive behaviors of rodents, but they are inconclusive, and no study compared different treatment durations. This study investigated the antidepressant effect of low doses of progesterone in male and female rats under acute or chronic administration. Male and female Wistar rats in different phases of the estrous cycle were acutely administered different doses of progesterone (0.0, 0.4. 0.8 and 1.2mg/kg) and tested in the forced swimming test (FST). The lowest dose of progesterone (0.4 mg/kg) was chronically administered during two complete estrous cycles and diestrous II female and male rats were tested in the FST. Progesterone decreased depressive-like behaviors only in chronically treated diestrous II female rats and increased immobility in male rats. This low dose of progesterone did not interfere in the hormonal cycling in female rats. Results also showed that diestrous II female rats had greater immobility than male rats in the FST. The greater immobility of diestrous II female rats shows that rats in this estrous phase present more depressive-like behaviors that may be associated with their lower serum levels of progesterone. We showed that progesterone chronically administered at low doses reverses these depressive-like behaviors and has an antidepressant effect during the diestrous II phase of the estrous cycle.
Progesterone is a neuroactive hormone with non-genomic effects on GABA(A) receptors (GABA(A)R). Changes in the expression of GABA(A)R subunits are related to depressive-like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABA(A)R α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg⁻¹) or vehicle, during two complete female estrous cycles (8-10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive-like behaviors and GABA(A)R α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABA(A)R γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABA(A) system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABA(A) R α1 subunit expression in the right prefrontal cortex of female rats.
Progesterone is a steroid which regulates neural function, thereby modulating neurotransmission, cell survival, and behavior. Previous studies by our group have shown that chronic administration of low doses of progesterone in diestrus II female rats has an antidepressant-like effect in the forced swimming test (FST). Depression is associated with the several neurotransmitters systems, including GABA and serotonin, and with neurodegeneration and cell death in some brain circuits. The aim of this study was to verify the effect of progesterone on the protein expression of the GABA(A) receptor α4 subunit, serotonin transporter (SERT), Akt, extracellular signal-regulated kinase (Erk), and caspase-3 in the hypothalamus of diestrus II female rats exposed to the FST. Female rats were treated with a daily injection of progesterone (0.4 mg/kg) or vehicle, during two complete oestrous cycles. On the day of the experiment, the animals were euthanized 30 min after the FST, the hypothalamus was dissected and protein expression of GABA(A) receptor α4 subunit, SERT, Akt, Erk, and caspase-3 was evaluated. Progesterone increased the expression of GABA(A) receptor α4 subunit but did not change the expression of SERT. Progesterone decreased the expression of procaspase-3 in the hypothalamus without changing the activation of Akt and Erk in this structure. In summary, our results suggest that progesterone acts to increase the expression of the GABA(A) receptor α4 subunit and decrease the expression of procaspase-3 in the hypothalamus of female rats. Such effects may be involved in the antidepressant-like effect of progesterone in female rats exposed to the FST.
The aim of this study was to evaluate the effect of progesterone on the protein expression of ␣4 subunit of GABA(A) receptor, serotonin transporter (SERT), Akt, Erk, and caspase-3 in the olfactory bulb (OB) of female rats exposed to the forced swimming test (FST). Female rats were injected daily with progesterone (0.4 mg/kg body mass) or vehicle during 2 complete oestrous cycles and exposed to the FST, and the protein expression of GABA(A) receptor ␣4 subunit, SERT, Akt, Erk, and caspase-3 in the OB were evaluated. Progesterone increased the expression of the ␣4 subunit in the right OB and decreased its expression in the left OB, although it did not change the expression of other proteins. In summary, our findings indicate that progesterone has an asymmetric modulatory effect on the expression of GABA(A) receptor ␣4 subunit in the OB. This effect could be related to the antidepressant-like effect of progesterone in female rats.Résumé : Le but de cette étude était d'évaluer l'effet de la progestérone sur l'expression protéique de la sous-unité ␣4 du récepteur GABA(A), du transporteur de la sérotonine (SERT), d'Akt, d'Erk et de la caspase-3 dans le bulbe olfactif (BO) de rats femelles exposées à un test de la nage forcée (FST, forced swimming test). Les rats femelles ont reçu une injection quotidienne de progestérone (0,4 mg/kg de masse corporelle) ou de véhicule durant deux cycles oestraux complets et elles ont été exposées au FST, à la suite de quoi l'expression protéique de la sous-unité ␣4 du récepteur GABA(A), du transporteur de la sérotonine (SERT), d'Akt, d'Erk et de la caspase-3 dans le BO a été évaluée. La progestérone accroissait l'expression de la sous-unité ␣4 dans le BO droit et diminuait son expression dans le BO gauche, mais elle ne modifiait pas l'expression des autres protéines. En résumé, les résultats des auteurs indiquent que la progestérone exerce un effet modulateur asymétrique sur l'expression de la sous-unité ␣4 du récepteur GABA(A) dans le BO. Cet effet pourrait être lié à l'effet de type antidépresseur de la progestérone chez les rats femelles. [Traduit par la Rédaction] Mots-clés : dépression, stéroïdes, test de la nage forcée, transporteur de sérotonine (SERT), neuroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.