Diverse taxa use Earth's magnetic field in conjunction with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, the mechanisms that underlie animal magnetoreception are not clearly understood, and how animals use Earth's magnetic field to navigate is an active area of investigation. Concurrently, Earth's magnetic field offers a signal that engineered systems can leverage for navigation in environments where man-made systems such as GPS are unavailable or unreliable. Using a proxy for Earth's magnetic field, and inspired by migratory animal behavior, this work implements a behavioral strategy that uses combinations of magnetic field inclination and intensity as rare or unique signatures that mark specific locations. Specifically, to increase the realism of previous work, in this study, a simulated agent uses a magnetic signatures based strategy to migrate in magnetic environments where lines of constant inclination and intensity are not necessarily orthogonal. The results further support existing notions that some animals may use combinations of magnetic properties as navigational markers, and provide insights into features and constraints that could enable navigational success or failure in either a biological or engineered system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.