The partition at equilibrium, in a two-phase liquid system, of a compound dissociated in one phase, or both, is expressed in terms of general equations and analyzed. Dissociation in the second phase, even weak, has a nonnegligible influence. The distribution ratio depends strongly on the concentration and can even be reversed in certain cases. All the partition and dissociation constants in each phase can be obtained from the concentrations at equilibrium measured under some given conditions. In less favorable cases, an apparent partition constant can still be estimated. This is illustrated by an experimental study, in the water/dichloromethane system, involving the partition of picric acid and cetyltrimethylammonium bromide (CTAB) followed by UV-Visible spectroscopy, and of a series of tetraalkylammonium bromides (ethyl, propyl, and butyl) assayed by mass spectroscopy.
Chlorophenols are potentially harmful pollutants that are found in numerous natural and agricultural systems. Plants are a sink for xenobiotics, which occur either intentionally or not, as they are unable to eliminate them although they generally metabolize them into less toxic compounds. The metabolic fate of [ (14)C] 4-chlorophenol (4-CP), [ (14)C] 2,4-dichlorophenol (2,4-DCP), and [ (14)C] 2,4,5-trichlorophenol (2,4,5-TCP) was investigated in lettuce, spinach, and radish to locate putative toxic metabolites that could become bioavailable to food chains. Radish plants were grown on sand for four weeks before roots were dipped in a solution of radiolabeled chlorophenol. The leaves of six-week old lettuce and spinach were treated. Three weeks after treatments, metabolites from edible plant parts were extracted and analyzed by high performance liquid chromatography (HPLC) and characterized by mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR). Characterization of compounds highlighted the presence of complex glycosides. Upon hydrolysis in the digestive tract of animals or humans, these conjugates could return to the toxic parent compound, and this should be kept in mind for registration studies.
This study compared the metabolic fate of [(14)C]-DCP, [(14)C]-residues from radish plants, and purified [(14)C]-DCP-(acetyl)glucose following oral administration in rats. A rapid excretion of radioactivity in urine occurred for [(14)C]-DCP, [(14)C]-DCP-(acetyl)glucose, and soluble residues, 69, 85, and 69% within 48 h, respectively. Radio-HPLC profiles of 0-24 h urine from rats fed [(14)C]-DCP and [(14)C]-DCP-(acetyl)glucose were close and qualitatively similar to those obtained from plant residues. No trace of native plant residues was detected under the study conditions. The structures of the two major peaks were identified by MS as the glucuronide and the sulfate conjugates of DCP. The characterization of a dehydrated glucuronide conjugate by MS and NMR of DCP was unusual. In contrast to soluble residues, bound residues were mainly excreted in feces, 90% within 48 h, whereas total residues were eliminated in both urine and feces. For total residues, the radioactivity in feces was higher than expected from the percentage of soluble and bound residues in radish plants. This result highlighted that less absorption took place when residues were present in the plant matrix as compared to plant-free residues and DCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.