The PGAS allows identification of marker-associated clinical/biological traits. Current cognitive performance in schizophrenic patients is modified by CPLX2 variants modulating posttranscriptional gene expression.
BackgroundSchizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.MethodsFor this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.ResultsThe corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.ConclusionsThe GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.
KCNN3, encoding the small conductance calcium-activated potassium channel SK3, harbours a polymorphic CAG repeat in the amino-terminal coding region with yet unproven function. Hypothesizing that KCNN3 genotypes do not influence susceptibility to schizophrenia but modify its phenotype, we explored their contribution to specific schizophrenic symptoms. Using the Göttingen Research Association for Schizophrenia (GRAS) data collection of schizophrenic patients (n = 1074), we performed a phenotype-based genetic association study (PGAS) of KCNN3. We show that long CAG repeats in the schizophrenic sample are specifically associated with better performance in higher cognitive tasks, comprising the capacity to discriminate, select and execute (p < 0.0001). Long repeats reduce SK3 channel function, as we demonstrate by patch-clamping of transfected HEK293 cells. In contrast, modelling the opposite in mice, i.e. KCNN3 overexpression/channel hyperfunction, leads to selective deficits in higher brain functions comparable to those influenced by SK3 conductance in humans. To conclude, KCNN3 genotypes modify cognitive performance, shown here in a large sample of schizophrenic patients. Reduction of SK3 function may constitute a pharmacological target to improve cognition in schizophrenia and other conditions with cognitive impairment.
Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3′untranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia.
The high predictive value of a genetic interaction within the stress axis for the risk of comorbid AUD may be used for novel preventive and individualized therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.