Griseofulvin (GF) is an oral antibiotic for widely occurring superficial mycosis in man and animals caused by dermaphyte fungi; it is also used in agriculture as a fungicide. The mechanism of the biological activity of GF is poorly understood. Here, the interactions of griseofulvin with lipid membranes were studied using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-myristoyl-sn-glycero-3-phosphoethanolamine (DMPE) monolayers spread at the air/water interface. Surface pressure (Pi), electric surface potential (Delta V), grazing incidence X-ray diffraction (GIXD), and Brewster angle microscopy (BAM) were used for studying pure phospholipid monolayers spread on GF aqueous solutions, as well as mixed phospholipid/GF monolayers spread on pure water subphase. Moreover, phospholipase A2 (PLA2) activity toward DLPC monolayers and molecular modeling of the GF surface and lipophilic properties were used to get more insight into the mechanisms of GF-membrane interactions. The results obtained show that GF has a meaningful impact on the film properties; we propose that nonpolar interactions are by and large responsible for GF retention in the monolayers. The modification of membrane properties can be detected using both physicochemical and enzymatic methods. The results obtained may be relevant for elaborating GF preparations with increased bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.