Gender stereotypes are manifest in most of the world's languages and are consequently propagated or amplified by NLP systems. Although research has focused on mitigating gender stereotypes in English, the approaches that are commonly employed produce ungrammatical sentences in morphologically rich languages. We present a novel approach for converting between masculine-inflected and feminineinflected sentences in such languages. For Spanish and Hebrew, our approach achieves F 1 scores of 82% and 73% at the level of tags and accuracies of 90% and 87% at the level of forms. By evaluating our approach using four different languages, we show that, on average, it reduces gender stereotyping by a factor of 2.5 without any sacrifice to grammaticality.
Topic models are a useful analysis tool to uncover the underlying themes within document collections. The dominant approach is to use probabilistic topic models that posit a generative story, but in this paper we propose an alternative way to obtain topics: clustering pretrained word embeddings while incorporating document information for weighted clustering and reranking top words. We provide benchmarks for the combination of different word embeddings and clustering algorithms, and analyse their performance under dimensionality reduction with PCA. The best performing combination for our approach performs as well as classical topic models, but with lower runtime and computational complexity.
The performance of neural machine translation systems is commonly evaluated in terms of BLEU. However, due to its reliance on target language properties and generation, the BLEU metric does not allow an assessment of which translation directions are more difficult to model. In this paper, we propose cross-mutual information (XMI): an asymmetric information-theoretic metric of machine translation difficulty that exploits the probabilistic nature of most neural machine translation models. XMI allows us to better evaluate the difficulty of translating text into the target language while controlling for the difficulty of the target-side generation component independent of the translation task. We then present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems. Code for replicating our experiments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.