Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms.
Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30-35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody's neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization. Key Contribution:The humanization of a mouse antibody V-domains able to neutralize Loxosceles intermedia venom paves the way for a new generation of anti-venom therapy. This study highlights the importance of understanding the antibody's mechanism of neutralization for appropriate design of innovative antidotes. Likewise, preserving favorable physico-chemical properties and antigen-binding activity is a challenge yet to be further addressed when considering pre-clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.