Apolipoprotein receptor 2 (APOER2) is an alternatively spliced transmembrane receptor that binds the neuroprotective ligand Reelin and Alzheimer disease (AD) related risk factor, APOE. Splicing of single exons in mouse Apoer2 regulates neuronal function and synaptic plasticity. However, the splicing landscape and function of human APOER2 isoforms in physiological and AD conditions remains unclear. Here, we identified over 200 unique human APOER2 isoforms in the parietal cortex and hippocampus with 151 isoforms common between the two brain regions. In addition, we identified region- and AD-specific APOER2 isoforms suggesting APOER2 splicing is spatially regulated and altered in AD. We tested whether the AD-specific APOER2 transcripts have distinct functional properties and demonstrated AD-specific APOER2 variants have altered cell surface expression, APOE-mediated receptor processing and synaptic changes which could contribute to neuronal dysfunction associated with AD pathogenesis.
Hox genes are key developmental patterning genes that impact segmental identity and skeletal patterning. While Hox11 genes are known to be expressed around the developing calcaneus bone of the ankle, previous studies on mice with Hox11 mutations have indicated that calcaneus morphology is not affected until both Hoxa11 and Hoxd11are knocked out, at which point the calcaneus and talus fail to form.The pisiform bone, a wrist bone that is paralogous to the calcaneus, exhibits substantial morphological and growth plate alterations with Hox11 mutations. We have previously shown that some length differences are present in the adult calcanei of mice with Hoxa11 and Hoxd11 loss‐of‐function mutations. The present study investigates whether or not the calcaneus growth plate is altered by Hoxa11 and Hoxd11 loss‐of‐function mutation. We conducted histological analysis of the calcaneus growth plate in juvenile mice with Hoxa11 and Hoxd11 loss‐of‐function mutations and compared them to ossification patterns observed in whole‐mount specimens that were cleared and stained with alizarin red and alcian blue to visualize bone and cartilage, respectively. Histological analysis reveals that early calcaneus growth plates preserve the hypertrophic and proliferative growth plate zones. This is in contrast to the pisiform and likely a result of Hoxc gene expression in the hind limb but not the forelimb. The shape of the epiphyseal cartilage, however, differs greatly in mice with a combined three loss‐of‐function alleles between Hoxa11 and Hoxd11. In these mice, the calcaneus epiphyseal cartilage is conical shaped with an elongated region of reserve zone chondrocytes. The ossification front and calcaneal tendon insertion are also altered compared to wild type specimens. The first evidence of calcaneal epiphysis ossification appears at P9 in some Hox11 mutant mice, while it typically appears at P11 in wild type specimens. By P17, the epiphysis appears to be larger in specimens with both Hoxa11 and Hoxd11 mutations compared to wild type. These results indicate that the calcaneus growth plate is more resilient to Hox11 mutations than the pisiform, but that the calcaneus exhibits morphological changes and evidence of altered ossification timing with fewer loss‐of‐function alleles than identified by previous studies.
Hox genes are key developmental patterning genes that impact segmental identity and skeletal patterning. Hox11 genes are known to impact wrist and ankle development and are expressed around the developing pisiform and calcaneus. These paralogous bones in the wrist and ankle are the only carpal and tarsal to form a growth plate in mammals, although humans have lost this growth plate and the associated primary ossification center in the pisiform. Loss‐of‐function mutations to Hoxa11 and Hoxd11 result in pisiform truncation and appear to also cause at least some disorganization of the growth plate cartilage; however, little is known about the nature of this disorganization or if ossification timing is impacted by Hox11 genes. The present study investigates the role of Hoxa11 and Hoxd11 in pisiform growth plate organization and ossification timing. We conducted histological analysis of the pisiform growth plate in juvenile mice with Hoxa11 and Hoxd11 loss‐of‐function mutations and compared them to ossification patterns observed in age‐ and genotype‐matched whole‐mount specimens that were cleared and stained with Alizarin red and Alcian blue to visualize bone and cartilage, respectively. Histological analysis reveals a dosage‐dependent impact of Hox11 mutations on pisiform ossification to both the primary and secondary ossification center. As the number of Hox11 mutation alleles increase, less bone is present in the early primary ossification center compared to age‐matched specimens. In specimens with three loss‐of‐function alleles, no trabeculae or growth plate organization are visible at P9, when both are well established in wild type specimens. Cleared and stained specimens indicate a possible pseudo epiphysis forming with Hoxd11 mutation, while Hoxa11 knockout specimens have not formed any visible epiphysis or calcification by P9. These results indicate that ossification timing and patterns, along with growth plate organization, are affected by Hox11 mutations during early pisiform ossification. Furthermore, Hoxa11 and Hoxd11 alter the pisiform epiphysis differently, suggesting that each plays a specific role in formation of the ossification front and epiphysis ossification either by influencing timing, ossification progression, or both. Further work is needed to understand the mechanisms by which Hox genes impact ossification patterns and timing, as well as the differential roles of Hoxa11 and Hoxd11 in growth plate organization and epiphysis formation.
Hox11 genes are expressed around the developing wrist and ankle and are known to substantially impact pisiform shape and length in mice. The calcaneus is a tarsal bone that is paralogous to the pisiform in the wrist, but previous descriptions of mice with Hox11 mutations have suggested that little morphological change takes place unless Hoxa11 and Hoxd11 are both knocked out, at which point the calcaneus fails to form. However, these studies primarily relied on cleared and stained whole‐mount specimens which limit resolution of morphological features. This study seeks to determine if calcaneus morphology is altered by three or fewer loss‐of‐function Hoxa11 and Hoxd11 alleles. We obtained microCT scans of 8 week old mice and compared calcaneus morphology in wild type mice and mice with one, two, and three Hoxa11 and Hoxd11 loss‐of‐function alleles. We used auto3dgm to conduct a 3D geometric morphometric analysis of shape variation using surface semi‐landmarks. Principle components (PC) analysis indicates that calcaneus morphology is altered in mice with Hoxa11 and Hoxd11 loss‐of‐function mutations. PC1 accounts for 35.4% of shape variation and results from changes to the width and height of the calcaneal neck and shape of peroneal tubercle/process. PC2 accounts for 11.9% of shape variation and results from changes to the width of the calcaneal tuberosity and height of the posterior talar facet. Most specimens with either combination of three out of four Hoxa11 and Hoxd11 loss‐of‐function alleles cluster together. The other genotypes form a gradient of morphological change with WT, Hoxd11 heterozygotes, and Hoxd11 knockouts being most similar to each other and Hoxa11 heterozygotes, Hoxa11 knockouts, and heterozygotes for both genes being most similar to each other. These results suggest that Hox11 loss‐of‐function mutations result in altered calcaneus morphology and Hoxa11 and Hoxd11 loss‐of‐function mutations alter the shape of the calcaneus in different ways when fewer than three alleles are knocked out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.