The glutamatergic system plays an important role in mediating neurobehavioral effects of ethanol. Metabotropic glutamate receptors subtype 5 (mGluR5) are modulators of glutamatergic neurotransmission and are abundant in brain regions known to be involved in ethanol self-administration. Here, we studied the effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a highly potent, noncompetitive mGlu5 receptor antagonist, on voluntary ethanol consumption and relapse behavior. For this purpose, we used two models for the measurement of relapse behavior: (i) reinstatement of ethanol-seeking behavior by drug-associated cues and (ii) the alcohol deprivation effect in long-term ethanol-consuming rats. In the first set of experiments, rats were trained to lever press for ethanol in the presence of a distinct set of cues. After extinction, the animals were exposed to the respective cues that initiated reinstatement of responding. A response-contingent ethanol prime further enhanced responding compared to the conditioned cues alone. Under these conditions, MPEP (0, 1, 3, and 10 mg/kg) attenuated ethanol seeking significantly and in a dose-related manner. However, at the highest dose, MPEP also decreased the number of inactive lever responses. In the second set of experiments, rats with 1 year of ethanol experience and repeated deprivation phases were used. A subchronic treatment with MPEP (twice daily; 0, 3, and 10 mg/kg) resulted in a significant and dose-dependent reduction of the alcohol deprivation effect (ADE). Although the same MPEP treatment regimen decreased baseline drinking, this effect was not as pronounced as on the ADE. These results show in two commonly used models of relapse to ethanol that pharmacological targeting of mGlu5 receptors may be a promising approach for the treatment of alcoholism.
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed predominantly by the Sec translocase. This system consists of the membrane-embedded protein-conducting channel SecYEG, the motor ATPase SecA, and the heterotrimeric SecDFyajC membrane protein complex. Previous studies suggest that anionic lipids are essential for SecA activity and that the N terminus of SecA is capable of penetrating the lipid bilayer. The role of lipid binding, however, has remained elusive. By employing differently sized nanodiscs reconstituted with single SecYEG complexes and comprising varying amounts of lipids, we establish that SecA gains access to the SecYEG complex via a lipid-bound intermediate state, whereas acidic phospholipids allosterically activate SecA for ATP-dependent protein translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.